Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2017_20_5_a5, author = {A. G. Losev and V. V. L{\cyre}vshinskiy}, title = {Data mining of microwave radiometry data in the diagnosis of breast cancer}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {49--62}, publisher = {mathdoc}, volume = {20}, number = {5}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2017_20_5_a5/} }
TY - JOUR AU - A. G. Losev AU - V. V. Lеvshinskiy TI - Data mining of microwave radiometry data in the diagnosis of breast cancer JO - Matematičeskaâ fizika i kompʹûternoe modelirovanie PY - 2017 SP - 49 EP - 62 VL - 20 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VVGUM_2017_20_5_a5/ LA - ru ID - VVGUM_2017_20_5_a5 ER -
%0 Journal Article %A A. G. Losev %A V. V. Lеvshinskiy %T Data mining of microwave radiometry data in the diagnosis of breast cancer %J Matematičeskaâ fizika i kompʹûternoe modelirovanie %D 2017 %P 49-62 %V 20 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/VVGUM_2017_20_5_a5/ %G ru %F VVGUM_2017_20_5_a5
A. G. Losev; V. V. Lеvshinskiy. Data mining of microwave radiometry data in the diagnosis of breast cancer. Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 20 (2017) no. 5, pp. 49-62. http://geodesic.mathdoc.fr/item/VVGUM_2017_20_5_a5/
[1] A. V. Zenovich, V. A. Glazunov, A. S. Oparin, F. G. Primachenko, “Algorithms of Decision-Making in Intelligent Advisory System for Diagnostics of the Mammary Glands”, Science Journal of Volgograd State University. Mathematics. Physics, 6:37 (2016), 129–142 | DOI
[2] A. V. Vaysblat, S. G. Vesnin, M. A. Konkin, The use of microwave radiothermometry in the diagnosis of breast cancer, http://www.resltd.ru/rus/literature/cancer.htm
[3] S. G. Vesnin, M. A. Kaplan, R. S. Avakyan, “Modern microwave radiothermometry of mammary glands”, Opukholi zhenskoy reproduktivnoy sistemy, 2008, no. 3, 28–33
[4] B. A. Kobrinskiy, “Advisory intelligent medical systems: classification, principles of construction, efficiency”, Vrach i informatsionnye tekhnologii, 2008, no. 2, 38–47
[5] B. A. Kobrinskiy, “Artificial intelligence systems in medicine: state, problems and prospects”, Novosti iskusstvennogo intellekta, 1995, no. 2, 65–79
[6] A. G. Losev, V. V. Levshinskiy, “The thermometry data mining in the diagnostics of mammary glands”, Upravlenie bolshimi sistemami, 70 (2017), 113–135
[7] A. G. Losev, E. A. Mazepa, Kh. M. Suleymanova, “On interrelation of some signs of rtm diagnostics of mammary glands diseases”, Science Journal of Volgograd State University. Mathematics. Physics, 4:29 (2015), 35–44 | DOI
[8] A. G. Losev, E. A. Mazepa, T. V. Zamechnik, “About several typical traits in the diagnosis of mammary glands pathology according to the data of microwave radiothemometry”, Modern problems of science and education, 2014, no. 6, 16587 | MR
[9] A. G. Losev, A. V. Khoperskov, A. S. Astakhov, Kh. M. Suleymanova, “Problems of Measurement and Modeling of Thermal and Radiation Fields in Biological Tissues: Analysis of Microwave Thermometry Data”, Science Journal of Volgograd State University. Mathematics. Physics, 2015, no. 6, 31–71 | DOI
[10] M. V. Polyakov, A. V. Khoperskov, “Mathematical modeling of radiation fields in biological tissues: the definition of the brightness temperature for the diagnosis”, Science Journal of Volgograd State University. Mathematics. Physics, 5:36 (2016), 73–84 | DOI
[11] L. N. Yasnitskiy, Introduction to artificial intelligence: a tutorial for university students, Academia, Moscow, 2005, 176 pp.
[12] H. B. Burke, “Artificial neural networks for cancer research: outcome prediction”, Seminars in Surgical Oncology, 10:1 (1994), 73–79 | DOI
[13] I. Kononenko, I. Bratko, M. Kukar, “Application of machine learning to medical diagnosis”, Machine Learning, Data Mining and Knowledge Discovery: Methods and Applications, John Wiley Sons, New York, 1998, 389–408
[14] I. Kononenko, “Machine Learning for Medical Diagnosis: History, State of the Art and Perspective”, Artificial Intelligence in Medicine, 23:1 (2001), 89–109 | DOI
[15] L. Lesmo, L. Saitta, P. Torasso, “Learning of Fuzzy Production Rules for Medical Diagnoses”, Approximate Reasoning in Decision Analysis, 1982, 249–260