On a class of functional equations
Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 20 (2017) no. 5, pp. 17-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

Differentiable considered class $C^4$ function $f_{1,2}:S_f\to R$, $S_f\subset R^{n+1}\times R^{n+1}$: $$ f_1(x,y) = \sigma\left(\theta(x,y),w\right),\, f_2(x,y) = \varkappa\left(\theta(x,y),z\right), $$ where $\theta$, $\sigma$, $\varkappa$ — are functions of class $C^4$, $\theta(x,y)=\theta(x^1,\ldots,x^n,y^1,\ldots,y^n)$, $w = x^{n+1}-y^{n+1}$, $z = x^{n+1}+y^{n+1}$, and the following inequalities hold: $$ \dfrac{\partial\theta}{\partial x^{i}}\ne0,\,\dfrac{\partial\theta}{\partial y^{i}}\ne0,\,\dfrac{\partial \sigma}{\partial\theta}\ne0,\,\dfrac{\partial \sigma}{\partial w}\ne0,\,\dfrac{\partial \varkappa}{\partial\theta}\ne0,\,\dfrac{\partial \varkappa}{\partial z}\ne0. $$ The functions $ f_{1,2} $ are two-point invariants of the action of some Lie group in the space $ R^{n+1}$. The criterion of local invariance of such an action for these functions leads to functional differential equations: $$ ((Y(x))'_{x^{n+1}} + (Y(y))'_{y^{n+1}})\varphi'_{w} + (Y(x) - Y(y))\varphi''_{ww} = 0,(1) $$ $$ ((Y(x))'_{x^{n+1}} + (Y(y))'_{y^{n+1}})\lambda'_{z} + (Y(x) + Y(y))\lambda''_{zz} = 0,(2) $$ where $\varphi(\theta,w) = -\frac{\partial \sigma}{\partial w}/\frac{\partial \sigma}{\partial \vartheta}$ and $\lambda(\theta,z) = -\frac{\partial \varkappa}{\partial z}/\frac{\partial \varkappa}{\partial \theta}$. Theorem 1. In the neighborhood $U(\langle x,y\rangle)$ the equation $(1)$, where $w = x^{n+1} - y^{n+1}$, $Y\ne\text{const}$, $\varphi'_w\ne0$, has the following solutions: $$ Y = C(x^1,\ldots,x^n),\,\varphi = a(\theta)w + b(\theta); $$ $$ Y = rx^{n+1} + c,\,\varphi = a(\theta)\dfrac{1}{w} + b(\theta); $$ $$ Y = r(x^{n+1})^2 + c,\,\varphi = a(\theta)\dfrac{1}{w} + b(\theta);$$ $$ Y =r\cos(\omega x^{n+1} + \alpha) + c,\,\varphi = a(\theta)\text{ctg}\dfrac{\omega w}{2} + b(\theta); $$ $$ Y =re^{\omega x^{n+1}} + c,\,\varphi = a(\theta)\dfrac{e^{\omega w}}{e^{\omega w}-1} + b(\theta); $$ $$ Y =r\cosh(\omega x^{n+1} + \alpha) + c,\,\varphi = a(\theta)\text{cth}\dfrac{\omega w}{2} + b(\theta); $$ $$ Y =r\sinh(\omega x^{n+1} + \alpha) + c,\,\varphi = a(\theta)\text{th}\dfrac{\omega w}{2} + b(\theta), $$ where $r,c,\alpha = \text{const}$, $C(x^1,\ldots,x^n)\ne\text{const}$, $a(\theta), b(\theta)$ — are functions of class $C^3$, $a(\theta)\ne0$. Theorem 2. In the neighborhood $U(\langle x,y\rangle)$ the equation $(2)$, where $z = x^{n+1} + y^{n+1}$, $Y\ne0$, $\lambda'_z\ne0$, has the following solutions: $$ Y = C(x^1,\ldots,x^n),\,\lambda(\theta,z) = a(\theta)z + b(\theta); $$ $$ Y = rx^{n+1} + c,\,\lambda = a(\theta)\dfrac{1}{rz+2c} + b(\theta); $$ $$ Y =r\cos(\omega x^{n+1} + \alpha),\,\lambda = a(\theta)\text{tg}\dfrac{\omega z+2\alpha}{2} + b(\theta); $$ $$ Y =re^{\omega x^{n+1}},\,\lambda = a(\theta)e^{-\omega z} + b(\theta); $$ $$ Y =r\cosh(\omega x^{n+1} + \alpha),\,\lambda = a(\theta)\text{th}\dfrac{\omega z+2\alpha}{2} + b(\theta); $$ $$ Y =r\sinh(\omega x^{n+1} + \alpha),\,\lambda = a(\theta)\text{cth}\dfrac{\omega z+2\alpha}{2} + b(\theta), $$ где $r,c,\alpha = \text{const}$, $C(x^1,\ldots,x^n)\ne\text{const}$, $a(\theta), b(\theta)$ — are functions of class $C^3$, $a(\theta)\ne0$.
Keywords: functional equation, functional differential equation, differential equation.
@article{VVGUM_2017_20_5_a1,
     author = {V. A. Kyrov},
     title = {On a class of functional equations},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {17--26},
     publisher = {mathdoc},
     volume = {20},
     number = {5},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2017_20_5_a1/}
}
TY  - JOUR
AU  - V. A. Kyrov
TI  - On a class of functional equations
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2017
SP  - 17
EP  - 26
VL  - 20
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2017_20_5_a1/
LA  - ru
ID  - VVGUM_2017_20_5_a1
ER  - 
%0 Journal Article
%A V. A. Kyrov
%T On a class of functional equations
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2017
%P 17-26
%V 20
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2017_20_5_a1/
%G ru
%F VVGUM_2017_20_5_a1
V. A. Kyrov. On a class of functional equations. Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 20 (2017) no. 5, pp. 17-26. http://geodesic.mathdoc.fr/item/VVGUM_2017_20_5_a1/

[1] V. A. Kyrov, “On a class of functional-differential equations”, Bulletin of Samara State Technical University. Series Physical and Mathematical Sciences, 1:26 (2012), 31–38 | DOI

[2] V. A. Kyrov, “Solution of functional equations associated with the scalar product”, Chelyabinsk Physics and Mathematics Journal, 1:2 (2017), 30–45 | MR

[3] V. A. Kyrov, “Functional equations in pseudo-Euclidean geometry”, Journal of Applied and Industrial Mathematics, 4:13 (2010), 38–51 | MR

[4] V. A. Kyrov, “Functional equations in symplectic geometry”, Trudy Inst. Mat. i Mekh. UrO RAN, 16, no. 2, 2010, 149–153

[5] G. G. Mikhaylichenko, Generalized analytic functions, Gorno-Altai State University Publ., Gorno-Altaisk, 2016, 297 pp.

[6] L. V. Ovsyannikov, Generalized analytic functions, Nauka Publ., Moscow, 1978, 400 pp. | MR