Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2017_20_5_a0, author = {A. N. Kondrashov}, title = {On {Beltrami} equations with a different-type of degeneracy on an arc}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {5--16}, publisher = {mathdoc}, volume = {20}, number = {5}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2017_20_5_a0/} }
TY - JOUR AU - A. N. Kondrashov TI - On Beltrami equations with a different-type of degeneracy on an arc JO - Matematičeskaâ fizika i kompʹûternoe modelirovanie PY - 2017 SP - 5 EP - 16 VL - 20 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VVGUM_2017_20_5_a0/ LA - ru ID - VVGUM_2017_20_5_a0 ER -
A. N. Kondrashov. On Beltrami equations with a different-type of degeneracy on an arc. Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 20 (2017) no. 5, pp. 5-16. http://geodesic.mathdoc.fr/item/VVGUM_2017_20_5_a0/
[1] P. P. Belinskiy, General Properties of Quasiconformal Mappings, Nauka. Sib. otd-nie Publ., Novosibirsk, 1974, 100 pp. | MR
[2] I. N. Vekua, Generalized analytic functions, Nauka Publ., Moscow, 1988, 512 pp. | MR
[3] L. I. Volkovyskiǐ, “Some problems of the theory of quasiconformal mappings”, Some Problems of Mathematics and Mechanics, Nauka Publ., Leningrad, 1970, 128–134 | MR
[4] V. M. Goldshteyn, Yu. G. Reshetnyak, Quasiconformal Mappings and Sobolev Spaces, Nauka Publ., Moscow, 1983, 284 pp. | MR
[5] A. N. Kondrashov, “Isothermic coordinates on sewing surfaces”, Science Journal of Volgograd State University. Mathematics. Physics, 6:37 (2016), 70–80
[6] A. N. Kondrashov, “On the theory of degenerate alternating beltrami equations”, Siberian Mathematical Journal, 53:6 (2012), 1321–1337 | MR
[7] A. N. Kondrashov, “On the theory of alternating Beltrami equation with many folds”, Science Journal of Volgograd State University. Mathematics. Physics, 2:19 (2013), 26–35
[8] A. N. Kondrashov, “Beltrami equations with degenerate on arcs”, Science Journal of Volgograd State University. Mathematics. Physics, 5:24 (2014), 24–39
[9] A. N. Kondrashov, “Alternating beltrami equation and conformal multifolds”, Science Journal of Volgograd State University. Mathematics. Physics, 5:30 (2015), 6–24
[10] V. G. Mazya, Sobolev Spaces, Izd-vo LGU Publ., Leningrad, 1985, 416 pp. | MR
[11] V. M. Miklyukov V.M., “Isothermic coordinates on singular surfaces”, Sbornik: Mathematics, 195:1 (2004), 69–88 | DOI | MR
[12] E. Kh. Yakubov, “Solutions of Beltrami's equation with degeneration”, Doklady Mathematics, 243:5 (1978), 1148–1149 | MR
[13] V. Gutlyanskii, V. Ryazanov, U. Srebro, E. Yakubov, The Beltrami Equations: A Geometric Approach, Springer, New York, 2012, xiv+301 pp. | MR
[14] M. Lavrentieff, “Sur une classe de représentations continues”, Sbornik: Mathematics, 42:4 (1935), 407–424
[15] O. Martio, V. M. Miklyukov, “On existence and uniqueness of degenerate Beltrami equations”, Complex Variables, 2004, no. 49, 647–656 | MR
[16] U. Srebro, E. Yakubov, “Branched folded maps and alternating Beltrami equations”, Journal d'analyse mathematique, 1996, no. 70, 65–90 | DOI | MR
[17] U. Srebro, E. Yakubov, “$\mu$-Homeomorphisms”, Contemporary Mathematics AMS, 211, 1997, 473–479 | DOI | MR
[18] U. Srebro, E. Yakubov, “Uniformization of maps with folds”, Israel mathematical conference proceedings, 1997, no. 11, 229–232 | MR