Influence of adsorption of atoms and molecules of oxygen on the electronic structure of graphene nanoribbons
Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 20 (2017) no. 4, pp. 95-102.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article presents the results of calculations of the energy characteristics of adsorption of oxygen atoms and molecules on graphene nanoribbons surface. The calculations of electronic structures were carried out by semi-empirical MNDO and PM3 quantum-chemical methods using the molecular cluster model with boundary pseudoatoms. The main geometrical and electronic-energy characteristics of graphene nanoribbons with adsorbed oxygen atoms and molecules were calculated. It is revealed that the changes of the frontier energies $E_{HOMO}$ and $E_{LUMO}$ indicate that the properties of nanoribbons depend on the result of adsorption, in particular, on the increase of these systems reactivity. It is also revealed that an oxygen molecule is weakly bound to the GNR surface with low adsorption energy. The configuration where the oxygen atom is located above the center of the С-С bond, or directly above the carbon atoms of the surface of the GNR has a stronger binding between an oxygen and surface.
Keywords: molecular cluster model, quantum chemistry, MNDO, PM3, adsorption energy.
@article{VVGUM_2017_20_4_a9,
     author = {E. N. Shamina and N. G. Lebedev},
     title = {Influence of adsorption of atoms and molecules of oxygen on the electronic structure of graphene nanoribbons},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {95--102},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2017_20_4_a9/}
}
TY  - JOUR
AU  - E. N. Shamina
AU  - N. G. Lebedev
TI  - Influence of adsorption of atoms and molecules of oxygen on the electronic structure of graphene nanoribbons
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2017
SP  - 95
EP  - 102
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2017_20_4_a9/
LA  - ru
ID  - VVGUM_2017_20_4_a9
ER  - 
%0 Journal Article
%A E. N. Shamina
%A N. G. Lebedev
%T Influence of adsorption of atoms and molecules of oxygen on the electronic structure of graphene nanoribbons
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2017
%P 95-102
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2017_20_4_a9/
%G ru
%F VVGUM_2017_20_4_a9
E. N. Shamina; N. G. Lebedev. Influence of adsorption of atoms and molecules of oxygen on the electronic structure of graphene nanoribbons. Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 20 (2017) no. 4, pp. 95-102. http://geodesic.mathdoc.fr/item/VVGUM_2017_20_4_a9/

[1] N. F. Stepanov, Quantum mechanics and quantum chemistry, Mir Publ., Moscow, 2001, 519 pp.

[2] E. N. Shamina, N. G. Lebedev, “Vliyanie khiralnosti uglerodnykh nanotrubok na dissotsiativnuyu adsorbtsiyu molekulyarnogo kisloroda na poverkhnosti”, Russian Journal of Physical Chemistry A, 5:89 (2015)

[3] E. N. Shamina, N. G. Lebedev, “The chiral adsorption effect of atomic oxygen on the carbon nanotube surface”, Science Journal of Volgograd State University. Mathematics. Physics, 1:18 (2013), 90–97

[4] V. A. Rigo, T. B. Martins, J. R. Antonio da Silva, J. R. Antonio, Fazzio Adalberto, Miwa Roberto Hiroki, “Electronic, structural, and transport properties of Ni-doped graphene nanoribbons”, Phys. Rev. B., 79 (2009), 075435 | DOI

[5] O. Hod, V. Barone, J. Peralta, G. Scuseria, “Enhanced half-metallicity in edge-oxidized zigzag graphene nanoribbons”, Nano Lett, 7:8 (2007), 2295–2299 | DOI

[6] M. Miller, F. J. Owens, “Defect induced distortion of armchair and zigzag graphene and boron nitride nanoribbons”, Chem. Phys. Lett, 570 (2013), 42–45 | DOI

[7] Y. W. Son, M. L. Cohen, S. G. Louie, “Energy Gaps in Graphene Nanoribbons”, Phys. Rev. Lett., 9:21 (2006), 216803–216806 | DOI

[8] Z. Wang, J. Xiao, M. Li, “Adsorption of transition metal atoms (Co and Ni) on zigzag graphene nanoribbon”, Appl. Phys. A, 110:1 (2013), 235–239 | DOI

[9] S. S. Yu, W. T. Zheng, J. Qing, “Oxidation of Graphene Nanoribbon by Molecular Oxygen”, IEEE Trans. Nanotechnol, 7:5 (2008), 628–635 | DOI