Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2017_20_4_a7, author = {M. P. Ovchintsev}, title = {Optimal recovery of analytic functions{\textquoteright} secondary derivatives by their values at a finite number of points}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {76--82}, publisher = {mathdoc}, volume = {20}, number = {4}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2017_20_4_a7/} }
TY - JOUR AU - M. P. Ovchintsev TI - Optimal recovery of analytic functions’ secondary derivatives by their values at a finite number of points JO - Matematičeskaâ fizika i kompʹûternoe modelirovanie PY - 2017 SP - 76 EP - 82 VL - 20 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VVGUM_2017_20_4_a7/ LA - ru ID - VVGUM_2017_20_4_a7 ER -
%0 Journal Article %A M. P. Ovchintsev %T Optimal recovery of analytic functions’ secondary derivatives by their values at a finite number of points %J Matematičeskaâ fizika i kompʹûternoe modelirovanie %D 2017 %P 76-82 %V 20 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VVGUM_2017_20_4_a7/ %G ru %F VVGUM_2017_20_4_a7
M. P. Ovchintsev. Optimal recovery of analytic functions’ secondary derivatives by their values at a finite number of points. Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 20 (2017) no. 4, pp. 76-82. http://geodesic.mathdoc.fr/item/VVGUM_2017_20_4_a7/
[1] K. Yu. Osipenko, “The Best Approximation of Analytic Functions by Information on Their Values at a Finite Number of Points”, Matematicheskie zametki, 19:1 (1976), 29–40
[2] S. Ya. Khavinson, Fundamentals of the Theory of Extremal Problems for Bounded Analytic Functions and Their Various Generalizations, MISI im. V.V. Kuybysheva, Moscow, 1981, 92 pp.
[3] S. Micchelli, T. Rivlin, “Lectures on optimal recovery”, Lect. Notes, 9, 1982, 21–93 | MR
[4] W. W. Rogosinski, H. Schapiro, “On certain extremum problems for analytic functions”, Acta Math, 90:3 (1954), 287–318 | MR