Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2017_20_4_a1, author = {G. V. Garkavenko and N. B. Uskova}, title = {The asymptotic of eigenvalues for difference operator with growing potentia}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {6--17}, publisher = {mathdoc}, volume = {20}, number = {4}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2017_20_4_a1/} }
TY - JOUR AU - G. V. Garkavenko AU - N. B. Uskova TI - The asymptotic of eigenvalues for difference operator with growing potentia JO - Matematičeskaâ fizika i kompʹûternoe modelirovanie PY - 2017 SP - 6 EP - 17 VL - 20 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VVGUM_2017_20_4_a1/ LA - ru ID - VVGUM_2017_20_4_a1 ER -
%0 Journal Article %A G. V. Garkavenko %A N. B. Uskova %T The asymptotic of eigenvalues for difference operator with growing potentia %J Matematičeskaâ fizika i kompʹûternoe modelirovanie %D 2017 %P 6-17 %V 20 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VVGUM_2017_20_4_a1/ %G ru %F VVGUM_2017_20_4_a1
G. V. Garkavenko; N. B. Uskova. The asymptotic of eigenvalues for difference operator with growing potentia. Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 20 (2017) no. 4, pp. 6-17. http://geodesic.mathdoc.fr/item/VVGUM_2017_20_4_a1/
[1] A. G. Baskakov, Harmonic analysis of linear operators, VGU Publ., Voronezh, 1987, 165 pp. | MR
[2] A. G. Baskakov, “Methods of abstract harmonic analysis in the perturbation of linear operators”, Sib. mat. zhurn., 24:1 (1983), 21–39 | MR
[3] A. G. Baskakov, A. V. Derbushev, A. O. Shcherbakov, “The method of similar operators in the spectral analysis of non-self-adjoint Dirac operators with non-smooth potentials”, Izvestiya: Mathematics, 75:3 (2011), 3–28 | DOI | MR
[4] A. G. Baskakov, D. M. Polyakov, “The method of similar operators in spectral analysis of the Hill operator with nonsmooth potential”, Sbornik: Mathematics, 208:1 (2017), 3–47 | DOI | MR
[5] A. G. Baskakov, “Estimates for the Green's function and parameters of exponential dichotomy of a hyperbolic operator semigroup and linear relations”, Sbornik: Mathematics, 206:8 (2015), 23–62 | DOI
[6] A. G. Baskakov, “Spectral analysis of perturbed nonquasianalytic and spectral operators”, Izvestiya: Mathematics, 54:4 (1994), 3–32
[7] A. G. Baskakov, “A theorem on splitting an operator, and some related questions in the analytic theory of perturbations”, Mathematics of the USSR-Izvestiya, 50:3 (1986), 435–457 | MR
[8] G. V. Garkavenko, N. B. Uskova, “The method of similar operators in the study of spectral properties of class for the difference operators”, Vestnik VGU. Seriya Fizika-Matematika, 2016, no. 3, 101–111
[9] G. V. Garkavenko, N. B. Uskova, A. R. Zgolich, “The method of similar operators in spectral analysis of the difference operator with even growing potential”, Nauchnye vedomosti BelGU. Seriya: Matematika, 44:20 (241) (2016), 42–49
[10] G. V. Garkavenko, N. B. Uskova, “Spectral analysis of the class for difference operators with growing potential”, Izv. Sarat. un-ta. Nov. Ser. Matematika. Mekhanika. Informatika, 16:4 (2016), 395–402 | MR
[11] G. V. Garkavenko, N. B. Uskova, “Spectral analysis of second order difference operators with growing potential”, Tavricheskiy vestnik informatiki i matematiki, 28:3 (2015), 40–48
[12] V. Musilimov, M. Otelbaev, “Estimation of the least eigenvalues for the matrix class corresponding to the Sturm — Liouville difference equation”, USSR Computational Mathematics and Mathematical Physics, 21:6 (1981), 1430–1434 | MR
[13] D. M. Polyakov, “Spectral properties of 1D Shrödinger operator”, Vestnik VGU. Seriya: Fizika-Matematika., 2016, no. 2, 146–152
[14] N. B. Uskova, “On spectral properties of second order differential operator with matrix potential”, Differential Equations, 52:5 (2016), 557–567 | DOI | MR
[15] N. B. Uskova, “On spectral properties of second order differential operator with matrix potential”, Ufa Math. Journal, 7:3 (2015), 88–99 | MR
[16] E. Khille, Functional Analysis and Semi-Groups, Izd-vo inostr. lit. Publ., Moscow, 1962, 830 pp. | MR
[17] A. N. Shelkovoy, “Asymptotic of eigenvalues of differential operators with nonlocal boundary conditions”, Nauchnye vedomosti BelGU. Seriya: Matematika. Fizik, 13 (234):43 (2016), 73–80
[18] K. -J. Engel, R. Nagel, One-parameter semigroups for linear evolution equations, Springer-Verlag, New York–Berlin–Heidelberg, 1999, 609 pp. | MR