The asymptotic of eigenvalues for difference operator with growing potentia
Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 20 (2017) no. 4, pp. 6-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider $A: D(A)\subset l_2(\mathbb{Z})\to l_2(\mathbb{Z})$, $(Ax)(n)=a(n)x(n)$, $n\in\mathbb{Z}$, $x\in D(A)$, and $(Bx)(n)=-2x(n)+x(n-1)+x(n+1)$. Let $a: \mathbb{Z}\to\mathbb{C}$ be a sequence with property: 1) $a(i)\ne a(j)$, $i\ne j$; 2) $\lim\limits_{|n|\to\infty}|a(n)|=\infty$; 3) $0$, $|i|\to\infty$. By $\mathcal{A}$ we denote the operator $A-B$. By $P_n$ we denote $P_n=P(a(n), A)$, $n\in\mathbb{Z}$, and by $Q_k$ denote the operator $Q_k=\sum\limits_{|i|\leqslant k}P_i$. Theorem 1. There exists a number $k\geqslant 0$, such that the spectrum $\sigma(\mathcal{A})$ of operator $\mathcal{A}$ has form $$ \sigma(\mathcal{A})=\sigma_{(k)}\bigcup\bigg(\bigcup_{|i|>k}\sigma_i\bigg), $$ where $\sigma_{(k)}$ is a finite set with number of points not exceeding $2k+1$ and $\sigma_i=\{\mu_i\}$, $|i|>k$, are singleton sets. The asymptotic formulas of eigenvalues have the following form: $$ \mu_i=a(i)+2+O(d_i^{-1}), $$ $$ \mu_i=a(i)+2-\frac{a(i+1)-2a(i)+a(i-1)}{(a(i+1)-a(i))(a(i-1)-a(i))}+O(d_i^{-3}), \quad |i|>k. $$ Theorem 2. Let the sequence $a:\mathbb{Z}\to\mathbb{C}$ satisfies the condition $\mathrm{Re}\,a(n)\leqslant\beta$ for all $n\in\mathbb{Z}$ and a $\beta\in\mathbb{R}$. Then the operator $\mathcal{A}$ is the generator of the semigroup operators $T: \mathbb{R}_+\to\mathrm{End}\,l_2(\mathbb{Z})$ and this semigroup is similar to $\widetilde{T}: \mathbb{R}_+\to\mathrm{End}\,l_2(\mathbb{Z})$ type $$ \widetilde{T}(t)=\widetilde{T}_{(k)}(t)\oplus \widetilde{T}^{(k)}(t), \quad t\in\mathbb{R}_+, $$ acting in $l_2(\mathbb{Z})=\mathcal{H}_{(k)}\oplus\mathcal{H}^{(k)}$, where $\mathcal{H}_{(k)}=\mathrm{Im}\,Q_k$ and $\mathcal{H}^{(k)}=\mathrm{Im}\,(I-Q_k)$. The semigroup $\widetilde{T}^{(k)}: \mathbb{R}_+\to\mathrm{End}\,\mathcal{H}^{(k)}$ determined by the formula $$ \widetilde{T}^{(k)}(t)x=\sum_{|n|>k}e^{\mu_nt}P_nx, \quad x\in\mathcal{H}^{(k)}, \quad t\in\mathbb{R}_+, $$ where the numbers $\mu_n$, $|n|>k$, are defined by Theorem 1. Theorem 3. Let $\alpha\leqslant \mathrm{Re}\,a(n)\leqslant\beta$, $\alpha$, $\beta\in\mathbb{R}$, for every $n\in\mathbb{Z}$. Then the operator $\mathcal{A}: D(\mathcal{A})\subset l_2(\mathbb{Z})\to l_2(\mathbb{Z})$ is generator of group $T: \mathbb{R}\to \mathrm{End}\,l_2(\mathbb{Z})$. This group is similar to $\widetilde{T}: \mathbb{R}\to \mathrm{End}\,l_2(\mathbb{Z})$, where $\widetilde{T}(t)=\widetilde{T}_{(k)}(t)\oplus \widetilde{T}^{(k)}(t)$, $t\in\mathbb{R}$ and $$ \widetilde{T}^{(k)}(t)x=\sum_{|n|>k}e^{\mu_nt}P_nx, \quad x\in\mathcal{H}^{(k)}, \quad t\in\mathbb{R}. $$ Theorem 4. Let the operator $\mathcal{A}: D(\mathcal{A})\subset l_2(\mathbb{Z})\to l_2(\mathbb{Z})$ be self-adjoint. Then $i\mathcal{A}$ is a generator of isometric group $T: \mathbb{R}\to \mathrm{End}\,l_2(\mathbb{Z})$. This group is similar to $$ \widetilde{T}(t)=\widetilde{T}_{(k)}(t)\oplus \widetilde{T}^{(k)}(t), \quad t\in\mathbb{R}. $$ and $$ \widetilde{T}^{(k)}(t)x=\sum_{|n|>k}e^{i\mu_nt}P_nx, \quad x\in\mathcal{H}^{(k)}, \quad t\in\mathbb{R}. $$
Keywords: method of similar operators, difference operator, eigenvalues, semigroup of operators, generator of operator semigroup.
@article{VVGUM_2017_20_4_a1,
     author = {G. V. Garkavenko and N. B. Uskova},
     title = {The asymptotic of eigenvalues for difference operator with  growing  potentia},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {6--17},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2017_20_4_a1/}
}
TY  - JOUR
AU  - G. V. Garkavenko
AU  - N. B. Uskova
TI  - The asymptotic of eigenvalues for difference operator with  growing  potentia
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2017
SP  - 6
EP  - 17
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2017_20_4_a1/
LA  - ru
ID  - VVGUM_2017_20_4_a1
ER  - 
%0 Journal Article
%A G. V. Garkavenko
%A N. B. Uskova
%T The asymptotic of eigenvalues for difference operator with  growing  potentia
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2017
%P 6-17
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2017_20_4_a1/
%G ru
%F VVGUM_2017_20_4_a1
G. V. Garkavenko; N. B. Uskova. The asymptotic of eigenvalues for difference operator with  growing  potentia. Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 20 (2017) no. 4, pp. 6-17. http://geodesic.mathdoc.fr/item/VVGUM_2017_20_4_a1/

[1] A. G. Baskakov, Harmonic analysis of linear operators, VGU Publ., Voronezh, 1987, 165 pp. | MR

[2] A. G. Baskakov, “Methods of abstract harmonic analysis in the perturbation of linear operators”, Sib. mat. zhurn., 24:1 (1983), 21–39 | MR

[3] A. G. Baskakov, A. V. Derbushev, A. O. Shcherbakov, “The method of similar operators in the spectral analysis of non-self-adjoint Dirac operators with non-smooth potentials”, Izvestiya: Mathematics, 75:3 (2011), 3–28 | DOI | MR

[4] A. G. Baskakov, D. M. Polyakov, “The method of similar operators in spectral analysis of the Hill operator with nonsmooth potential”, Sbornik: Mathematics, 208:1 (2017), 3–47 | DOI | MR

[5] A. G. Baskakov, “Estimates for the Green's function and parameters of exponential dichotomy of a hyperbolic operator semigroup and linear relations”, Sbornik: Mathematics, 206:8 (2015), 23–62 | DOI

[6] A. G. Baskakov, “Spectral analysis of perturbed nonquasianalytic and spectral operators”, Izvestiya: Mathematics, 54:4 (1994), 3–32

[7] A. G. Baskakov, “A theorem on splitting an operator, and some related questions in the analytic theory of perturbations”, Mathematics of the USSR-Izvestiya, 50:3 (1986), 435–457 | MR

[8] G. V. Garkavenko, N. B. Uskova, “The method of similar operators in the study of spectral properties of class for the difference operators”, Vestnik VGU. Seriya Fizika-Matematika, 2016, no. 3, 101–111

[9] G. V. Garkavenko, N. B. Uskova, A. R. Zgolich, “The method of similar operators in spectral analysis of the difference operator with even growing potential”, Nauchnye vedomosti BelGU. Seriya: Matematika, 44:20 (241) (2016), 42–49

[10] G. V. Garkavenko, N. B. Uskova, “Spectral analysis of the class for difference operators with growing potential”, Izv. Sarat. un-ta. Nov. Ser. Matematika. Mekhanika. Informatika, 16:4 (2016), 395–402 | MR

[11] G. V. Garkavenko, N. B. Uskova, “Spectral analysis of second order difference operators with growing potential”, Tavricheskiy vestnik informatiki i matematiki, 28:3 (2015), 40–48

[12] V. Musilimov, M. Otelbaev, “Estimation of the least eigenvalues for the matrix class corresponding to the Sturm — Liouville difference equation”, USSR Computational Mathematics and Mathematical Physics, 21:6 (1981), 1430–1434 | MR

[13] D. M. Polyakov, “Spectral properties of 1D Shrödinger operator”, Vestnik VGU. Seriya: Fizika-Matematika., 2016, no. 2, 146–152

[14] N. B. Uskova, “On spectral properties of second order differential operator with matrix potential”, Differential Equations, 52:5 (2016), 557–567 | DOI | MR

[15] N. B. Uskova, “On spectral properties of second order differential operator with matrix potential”, Ufa Math. Journal, 7:3 (2015), 88–99 | MR

[16] E. Khille, Functional Analysis and Semi-Groups, Izd-vo inostr. lit. Publ., Moscow, 1962, 830 pp. | MR

[17] A. N. Shelkovoy, “Asymptotic of eigenvalues of differential operators with nonlocal boundary conditions”, Nauchnye vedomosti BelGU. Seriya: Matematika. Fizik, 13 (234):43 (2016), 73–80

[18] K. -J. Engel, R. Nagel, One-parameter semigroups for linear evolution equations, Springer-Verlag, New York–Berlin–Heidelberg, 1999, 609 pp. | MR