Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2017_20_3_a9, author = {A. V. Loboda and A. V. Shipovskaya}, title = {On {Affine} {Homogeneous} {Real} {Hypersurfaces} of {General} position in $\Bbb C^3$}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {111--135}, publisher = {mathdoc}, volume = {20}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a9/} }
TY - JOUR AU - A. V. Loboda AU - A. V. Shipovskaya TI - On Affine Homogeneous Real Hypersurfaces of General position in $\Bbb C^3$ JO - Matematičeskaâ fizika i kompʹûternoe modelirovanie PY - 2017 SP - 111 EP - 135 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a9/ LA - ru ID - VVGUM_2017_20_3_a9 ER -
%0 Journal Article %A A. V. Loboda %A A. V. Shipovskaya %T On Affine Homogeneous Real Hypersurfaces of General position in $\Bbb C^3$ %J Matematičeskaâ fizika i kompʹûternoe modelirovanie %D 2017 %P 111-135 %V 20 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a9/ %G ru %F VVGUM_2017_20_3_a9
A. V. Loboda; A. V. Shipovskaya. On Affine Homogeneous Real Hypersurfaces of General position in $\Bbb C^3$. Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 20 (2017) no. 3, pp. 111-135. http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a9/
[1] E. V. Akimova, A. V. Loboda, “Computer algorithms of integrating matrix Li algebras”, Sb. stud. nauch. rabot FKN VGU, no. 4, 2015, 3–8
[2] A. V. Atanov, A. V. Loboda, “Affine homogeneous surfaces of (0,0)-type in $\Bbb C^3$ space”, Mathematical Notes, 97:2 (2015), 309–313 | DOI | MR | Zbl
[3] R. Bishop, R. Krittenden, Geometry of Manifolds, Mir Publ., Moscow, 1963, 364 pp. | MR
[4] A. V. Loboda, “On dimensions of affine transformation groups transitively acting on a real hypersurfaces in $\Bbb C^3$”, Science Journal of Volgograd State University. Mathematics. Physics, 2014, no. 4, 11–35
[5] A. V. Loboda, “On determing homogeneous pseudo-convex hypersurface by means of its normal equation coefficients”, Mathematical Notes, 73:3 (2003), 419–423 | DOI | MR | Zbl
[6] A. V. Loboda, “Homogeneous pseudo-convex hypersurface in $\Bbb C^3$ with two-dimesional isotropy groups”, Sbornik: Mathematics, 192 (2001), 3–24 | DOI | Zbl
[7] A. V. Loboda, V. K. Evchenko, “On different ways of presenting matrix Li algebras, connected with homogeneous surface”, Russian Mathematics, 2013, no. 4, 42–60 | Zbl
[8] A. V. Loboda, , T. T. Z. Nguen, “On affine homogeneity of a surfaces of tubular type in $\Bbb C^3$”, Tr. MIAN, 279 (2012), 102–119 | Zbl
[9] A. V. Loboda, A. S. Khodarev, “On a family of affinely homogeneous real hypersurfaces of 3-dimensional complex space”, Russian Mathematics, 2003, no. 10, 38–50 | Zbl
[10] A. V. Lobod, A. V. Shipovskaya, “On the full list of affine homogeneous surface of ($\varepsilon,0 $)-type in $\Bbb C^3$ space”, Russian Mathematics, 2015, no. 2, 75–82
[11] T. T. Z. Nguen, “Affine homogeneous real hypersurfaces of tubular type in $\Bbb C^3$”, Mathematical Notes, 94:2 (2013), 246–265 | DOI | Zbl
[12] A. V. Shipovskaya, “Systems of quadratic equations connected with affine homogeneity problem”, Vestnik VGU. Fizika. Matematika, 2015, no. 4, 190–201 | Zbl
[13] M. Sabzevari, A. Hashemi, B. M. Alizadeh, J. Merker, “Applications of differential algebra for computing Lie algebras of infinitesimal CR-automorphisms”, arXiv: 1212.3070 [math.AP]
[14] A. V. Atanov, A. V. Loboda, A. V. Shipovskaja, “Affine homogeneous strictly pseudoconvex hypersurfaces of the type $ (1/2,0) $ in $ \Bbb C^3 $”, arXiv: 1401.2252 [math.AP]
[15] V. K. Beloshapka, I. G. Kossovskiy, “Homogeneous hypersurfaces in $\Bbb C^{3}$, associated with a model CR-cubic”, J. Geom. Anal., 20:3 (2010), 538–564 | DOI | MR | Zbl
[16] E. Cartan, “Sur la geometrie pseudoconforme des hypersurfaces de deux variables complexes”, Ann. Math. Pura Appl., 11:4 (1932), 17–90 | MR
[17] B. Doubrov, B. Komrakov, M. Rabinovich, “Homogeneous surfaces in the 3-dimensional affine geometry”, Prepr. Ser. Pure Math., 1995, 1–26, Inst. Matem. Univ. Oslo, Oslo
[18] M. Eastwood, V. V. Ezhov, “On affine normal forms and a classification of homogeneous surfaces in affine three-space”, Geom. Dedicata, 77 (1999), 11–69 | DOI | MR | Zbl
[19] G. Fels, W. Kaup, “Classification of Levi degenerate homogeneous CR-manifolds in dimension 5”, Acta Math., 210 (2008), 1–82 | DOI | MR
[20] A. V. Isaev, B. Kruglikov, “On the symmetry algebras of 5-dimensional CR-manifolds”, arXiv: 1607.06072 [math.AP] | MR
[21] C. R. Johnson, H. Smigoc, D. Yang, “Solution Theory for Systems of Bilinear Equations”, arXiv: 1303.4988 [math.AP] | MR
[22] A. V. Loboda, 2010 http://www.mathematik.uni-bielefeld.de/sfb701/files/preprints/sfb10091.pdf
[23] A. V. Loboda, V. K. Evchenko, 2011 http://www.mathematik.uni-bielefeld.de/sfb701/files/preprints/sfb11129.pdf