Log-Sobolev inequalities on graphs with positive curvature
Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 20 (2017) no. 3, pp. 99-110.

Voir la notice de l'article provenant de la source Math-Net.Ru

Based on a global estimate of the heat kernel, some important inequalities such as Poincaré inequality and log-Sobolev inequality, furthermore a tight logarithm Sobolev inequality are presented on graphs, just under a positive curvature condition $CDE'(n,K)$ with some $K>0$. As consequences, we obtain exponential integrability of integrable Lipschitz functions and moment bounds at the same assumption on graphs.
Keywords: Log-Sobolev inequality, Laplacian
Mots-clés : $CDE'(n,K)$.
@article{VVGUM_2017_20_3_a8,
     author = {Y. Lin and Sh. Liu and H. Song},
     title = {Log-Sobolev inequalities on graphs with positive curvature},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {99--110},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a8/}
}
TY  - JOUR
AU  - Y. Lin
AU  - Sh. Liu
AU  - H. Song
TI  - Log-Sobolev inequalities on graphs with positive curvature
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2017
SP  - 99
EP  - 110
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a8/
LA  - en
ID  - VVGUM_2017_20_3_a8
ER  - 
%0 Journal Article
%A Y. Lin
%A Sh. Liu
%A H. Song
%T Log-Sobolev inequalities on graphs with positive curvature
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2017
%P 99-110
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a8/
%G en
%F VVGUM_2017_20_3_a8
Y. Lin; Sh. Liu; H. Song. Log-Sobolev inequalities on graphs with positive curvature. Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 20 (2017) no. 3, pp. 99-110. http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a8/

[1] D. Bakry, I. Gentil, M. Ledoux, Analysis and Geometry of Markov Diffusion Operators, Springer, Basel, 2014, 552 pp. | MR | Zbl

[2] F. Bauer, P. Horn, CDE Application: Eigenvalue Estimate

[3] F. Bauer, P. Horn, Y. Lin, G. Lippner, D. Mangoubi, S.\;-T. Yau, “Li – Yau inequality on graphs”, J. of Diff. Geom., 99:3 (2015), 359–405 | DOI | MR | Zbl

[4] E.\;B. Davies, B. Simon, “Ultracontractivity and the heat kernel for Schrödinger operators and Dirichlet Laplacians”, J. Funct. Anal., 59 (2) (1984), 335–395 | DOI | MR | Zbl

[5] J.\;D. Deuschel, D.\;W. Stroock, Large Deviations, Academic Press, Boston, 1989, 307 pp. | MR | Zbl

[6] A. Grigor'yan, J. Hu, “Upper bounds of heat kernels on doubling spaces”, Moscow Math. J., 14 (2014), 505–563 | MR | Zbl

[7] S. Haeseler, M. Keller, D. Lenz, R. Wojciechowski, “Laplacians on infinite graphs: Dirichlet and Neumann boundary conditions”, arXiv: 1103.3695 [math.AP] | MR

[8] P. Horn, Y. Lin, S. Liu, S.\;-T. Yau, “Volume doubling, Poincaré inequality and Guassian heat kernel estimate for nonnegative curvature graphs”, arXiv: 1411.5087 [math.AP]

[9] M. Keller, D. Lenz, “Dirichlet forms and stochastic completeness of graphs and subgraphs”, J. Reine Angew. Math., 666 (2012), 189–223 | MR | Zbl

[10] O.\;S. Rothaus, “Analytic inequalities, isoperimetric inequalities and logarithmic Sobolev inequalities”, J. Funct. Anal., 64 (2) (1985), 296–313 | DOI | MR | Zbl

[11] B. Simon, R. Høegh-Krohn, “Hypercontractive semigroups and two dimensional self-coupled Bose fields”, J. Funct. Anal., 9 (1972), 121–180 | DOI | MR | Zbl