Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2017_20_3_a8, author = {Y. Lin and Sh. Liu and H. Song}, title = {Log-Sobolev inequalities on graphs with positive curvature}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {99--110}, publisher = {mathdoc}, volume = {20}, number = {3}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a8/} }
TY - JOUR AU - Y. Lin AU - Sh. Liu AU - H. Song TI - Log-Sobolev inequalities on graphs with positive curvature JO - Matematičeskaâ fizika i kompʹûternoe modelirovanie PY - 2017 SP - 99 EP - 110 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a8/ LA - en ID - VVGUM_2017_20_3_a8 ER -
Y. Lin; Sh. Liu; H. Song. Log-Sobolev inequalities on graphs with positive curvature. Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 20 (2017) no. 3, pp. 99-110. http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a8/
[1] D. Bakry, I. Gentil, M. Ledoux, Analysis and Geometry of Markov Diffusion Operators, Springer, Basel, 2014, 552 pp. | MR | Zbl
[2] F. Bauer, P. Horn, CDE Application: Eigenvalue Estimate
[3] F. Bauer, P. Horn, Y. Lin, G. Lippner, D. Mangoubi, S.\;-T. Yau, “Li – Yau inequality on graphs”, J. of Diff. Geom., 99:3 (2015), 359–405 | DOI | MR | Zbl
[4] E.\;B. Davies, B. Simon, “Ultracontractivity and the heat kernel for Schrödinger operators and Dirichlet Laplacians”, J. Funct. Anal., 59 (2) (1984), 335–395 | DOI | MR | Zbl
[5] J.\;D. Deuschel, D.\;W. Stroock, Large Deviations, Academic Press, Boston, 1989, 307 pp. | MR | Zbl
[6] A. Grigor'yan, J. Hu, “Upper bounds of heat kernels on doubling spaces”, Moscow Math. J., 14 (2014), 505–563 | MR | Zbl
[7] S. Haeseler, M. Keller, D. Lenz, R. Wojciechowski, “Laplacians on infinite graphs: Dirichlet and Neumann boundary conditions”, arXiv: 1103.3695 [math.AP] | MR
[8] P. Horn, Y. Lin, S. Liu, S.\;-T. Yau, “Volume doubling, Poincaré inequality and Guassian heat kernel estimate for nonnegative curvature graphs”, arXiv: 1411.5087 [math.AP]
[9] M. Keller, D. Lenz, “Dirichlet forms and stochastic completeness of graphs and subgraphs”, J. Reine Angew. Math., 666 (2012), 189–223 | MR | Zbl
[10] O.\;S. Rothaus, “Analytic inequalities, isoperimetric inequalities and logarithmic Sobolev inequalities”, J. Funct. Anal., 64 (2) (1985), 296–313 | DOI | MR | Zbl
[11] B. Simon, R. Høegh-Krohn, “Hypercontractive semigroups and two dimensional self-coupled Bose fields”, J. Funct. Anal., 9 (1972), 121–180 | DOI | MR | Zbl