Log-Sobolev inequalities on graphs with positive curvature
Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 20 (2017) no. 3, pp. 99-110

Voir la notice de l'article provenant de la source Math-Net.Ru

Based on a global estimate of the heat kernel, some important inequalities such as Poincaré inequality and log-Sobolev inequality, furthermore a tight logarithm Sobolev inequality are presented on graphs, just under a positive curvature condition $CDE'(n,K)$ with some $K>0$. As consequences, we obtain exponential integrability of integrable Lipschitz functions and moment bounds at the same assumption on graphs.
Keywords: Log-Sobolev inequality, Laplacian
Mots-clés : $CDE'(n,K)$.
@article{VVGUM_2017_20_3_a8,
     author = {Y. Lin and Sh. Liu and H. Song},
     title = {Log-Sobolev inequalities on graphs with positive curvature},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {99--110},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a8/}
}
TY  - JOUR
AU  - Y. Lin
AU  - Sh. Liu
AU  - H. Song
TI  - Log-Sobolev inequalities on graphs with positive curvature
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2017
SP  - 99
EP  - 110
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a8/
LA  - en
ID  - VVGUM_2017_20_3_a8
ER  - 
%0 Journal Article
%A Y. Lin
%A Sh. Liu
%A H. Song
%T Log-Sobolev inequalities on graphs with positive curvature
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2017
%P 99-110
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a8/
%G en
%F VVGUM_2017_20_3_a8
Y. Lin; Sh. Liu; H. Song. Log-Sobolev inequalities on graphs with positive curvature. Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 20 (2017) no. 3, pp. 99-110. http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a8/