Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2017_20_3_a7, author = {N. Kajino}, title = {Equivalence of recurrence and {Liouville} property for symmetric {Dirichlet} forms}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {89--98}, publisher = {mathdoc}, volume = {20}, number = {3}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a7/} }
TY - JOUR AU - N. Kajino TI - Equivalence of recurrence and Liouville property for symmetric Dirichlet forms JO - Matematičeskaâ fizika i kompʹûternoe modelirovanie PY - 2017 SP - 89 EP - 98 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a7/ LA - en ID - VVGUM_2017_20_3_a7 ER -
N. Kajino. Equivalence of recurrence and Liouville property for symmetric Dirichlet forms. Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 20 (2017) no. 3, pp. 89-98. http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a7/
[1] R.\;M. Blumenthal, R.\;K. Getoor, Markov Processes and Potential Theory, Academic Press, New York, 1968, 312 pp. | MR | Zbl
[2] Z.\;-Q. Chen, M. Fukushima, Symmetric Markov Processes, Time Change, and Boundary Theory, Princeton University Press, Princeton, 2012, 512 pp. | MR | Zbl
[3] Z.\;-Q. Chen, K. Kuwae, “On subharmonicity for symmetric Markov processes”, J. Math. Soc. Japan, 64 (2012), 1181–1209 | DOI | MR | Zbl
[4] M. Fukushima, “On extended Dirichlet spaces and the space of BL functions”, Potential theory and stochastics in Albac, Theta Ser. Adv. Math., 11 (2009), 101–110, Theta, Bucharest | MR
[5] M. Fukushima, Personal communication., December 17, 2008
[6] M. Fukushima, Y. Oshima, M. Takeda, Dirichlet Forms and Symmetric Markov Processes, Walter de Gruyter, Berlin, 2011, 489 pp. | MR | Zbl
[7] M. Fukushima, M.Takeda, Markov Processes, (in Japanese), Baifukan, Tokyo, 2008, 489 pp.
[8] R.\;K. Getoor, Excessive Measures, Birkhäuser, Boston, 1990, 190 pp. | MR | Zbl
[9] R.\;K. Getoor, “Transience and recurrence of Markov processes”, Séminaire de probabilités de Strasbourg, Lecture Notes in Math., 14, Springer, Berlin, 1980, 397–409 | DOI | MR
[10] Y. Ōshima, “Potential of recurrent symmetric Markov processes and its associated Dirichlet spaces”, Functional analysis in Markov processes (Katata/Kyoto, 1981),, Lecture Notes in Math., 923, Springer, Berlin, 1982, 260–275 | DOI | MR
[11] E.\;M. Ouhabaz, “Invariance of Closed Convex Sets and Domination Criteria for Semigroups”, Potential Anal., 5 (1996), 611–625 | DOI | MR | Zbl
[12] M. Schmuland, “Extended Dirichlet spaces”, C. R. Math. Acad. Sci. Soc. R. Can., 21 (1999), 146–152 | MR | Zbl
[13] M. Schmuland, “Positivity preserving forms have the Fatou property”, Potential Anal., 10 (1999), 373–378 | DOI | MR | Zbl
[14] I. Shigekawa, “Semigroups preserving a convex set in a Banach space”, Kyoto J. Math., 51 (2011), 647–672 | DOI | MR | Zbl