Equivalence of recurrence and Liouville property for symmetric Dirichlet forms
Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 20 (2017) no. 3, pp. 89-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a symmetric Dirichlet form $(\mathcal{E},\mathcal{F})$ on a (non-trivial) $\sigma$-finite measure space $(E,\mathcal{B},m)$ with associated Markovian semigroup $\{T_{t}\}_{t\in(0,\infty)}$, we prove that $(\mathcal{E},\mathcal{F})$ is both irreducible and recurrent if and only if there is no non-constant $\mathcal{B}$-measurable function $u:E\to[0,\infty]$ that is $\mathcal{E}$-excessive, i.e., such that $T_{t}u\leq u$ $m$-a.e. for any $t\in(0,\infty)$. We also prove that these conditions are equivalent to the equality $\{u\in\mathcal{F}_{e}\mid \mathcal{E}(u,u)=0\}=\mathbb{R}1$, where $\mathcal{F}_{e}$ denotes the extended Dirichlet space associated with $(\mathcal{E},\mathcal{F})$. The proof is based on simple analytic arguments and requires no additional assumption on the state space or on the form. In the course of the proof we also present a characterization of the $\mathcal{E}$-excessiveness in terms of $\mathcal{F}_{e}$ and $\mathcal{E}$, which is valid for any symmetric positivity preserving form.
Keywords: symmetric Dirichlet forms, symmetric positivity preserving forms, extended Dirichlet space, excessive functions, recurrence, Liouville property.
@article{VVGUM_2017_20_3_a7,
     author = {N. Kajino},
     title = {Equivalence of recurrence and {Liouville} property for symmetric {Dirichlet} forms},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {89--98},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a7/}
}
TY  - JOUR
AU  - N. Kajino
TI  - Equivalence of recurrence and Liouville property for symmetric Dirichlet forms
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2017
SP  - 89
EP  - 98
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a7/
LA  - en
ID  - VVGUM_2017_20_3_a7
ER  - 
%0 Journal Article
%A N. Kajino
%T Equivalence of recurrence and Liouville property for symmetric Dirichlet forms
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2017
%P 89-98
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a7/
%G en
%F VVGUM_2017_20_3_a7
N. Kajino. Equivalence of recurrence and Liouville property for symmetric Dirichlet forms. Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 20 (2017) no. 3, pp. 89-98. http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a7/

[1] R.\;M. Blumenthal, R.\;K. Getoor, Markov Processes and Potential Theory, Academic Press, New York, 1968, 312 pp. | MR | Zbl

[2] Z.\;-Q. Chen, M. Fukushima, Symmetric Markov Processes, Time Change, and Boundary Theory, Princeton University Press, Princeton, 2012, 512 pp. | MR | Zbl

[3] Z.\;-Q. Chen, K. Kuwae, “On subharmonicity for symmetric Markov processes”, J. Math. Soc. Japan, 64 (2012), 1181–1209 | DOI | MR | Zbl

[4] M. Fukushima, “On extended Dirichlet spaces and the space of BL functions”, Potential theory and stochastics in Albac, Theta Ser. Adv. Math., 11 (2009), 101–110, Theta, Bucharest | MR

[5] M. Fukushima, Personal communication., December 17, 2008

[6] M. Fukushima, Y. Oshima, M. Takeda, Dirichlet Forms and Symmetric Markov Processes, Walter de Gruyter, Berlin, 2011, 489 pp. | MR | Zbl

[7] M. Fukushima, M.Takeda, Markov Processes, (in Japanese), Baifukan, Tokyo, 2008, 489 pp.

[8] R.\;K. Getoor, Excessive Measures, Birkhäuser, Boston, 1990, 190 pp. | MR | Zbl

[9] R.\;K. Getoor, “Transience and recurrence of Markov processes”, Séminaire de probabilités de Strasbourg, Lecture Notes in Math., 14, Springer, Berlin, 1980, 397–409 | DOI | MR

[10] Y. Ōshima, “Potential of recurrent symmetric Markov processes and its associated Dirichlet spaces”, Functional analysis in Markov processes (Katata/Kyoto, 1981),, Lecture Notes in Math., 923, Springer, Berlin, 1982, 260–275 | DOI | MR

[11] E.\;M. Ouhabaz, “Invariance of Closed Convex Sets and Domination Criteria for Semigroups”, Potential Anal., 5 (1996), 611–625 | DOI | MR | Zbl

[12] M. Schmuland, “Extended Dirichlet spaces”, C. R. Math. Acad. Sci. Soc. R. Can., 21 (1999), 146–152 | MR | Zbl

[13] M. Schmuland, “Positivity preserving forms have the Fatou property”, Potential Anal., 10 (1999), 373–378 | DOI | MR | Zbl

[14] I. Shigekawa, “Semigroups preserving a convex set in a Banach space”, Kyoto J. Math., 51 (2011), 647–672 | DOI | MR | Zbl