Can one observe the bottleneckness of a space by the heat distribution?
Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 20 (2017) no. 3, pp. 77-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we discuss a bottleneck structure of a non-compact manifold appearing in the behavior of the heat kernel. This is regarded as an inverse problem of heat kernel estimates on manifolds with ends obtained in [10] and [8]. As a result, if a non-parabolic manifold is divided into two domains by a partition and we have suitable heat kernel estimates between different domains, we obtain an upper bound of the capacity growth of $\delta$-skin of the partition. By this estimate of the capacity, we obtain an upper bound of the first non-zero Neumann eigenvalue of Laplace — Beltrami operator on balls. Under the assumption of an isoperimetric inequality, an upper bound of the volume growth of the $\delta$-skin of the partition is also obtained.
Keywords: heat kernel, manifold with ends, inverse problem.
@article{VVGUM_2017_20_3_a6,
     author = {S. Ishiwata},
     title = {Can one observe the bottleneckness of a space by the heat distribution?},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {77--88},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a6/}
}
TY  - JOUR
AU  - S. Ishiwata
TI  - Can one observe the bottleneckness of a space by the heat distribution?
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2017
SP  - 77
EP  - 88
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a6/
LA  - en
ID  - VVGUM_2017_20_3_a6
ER  - 
%0 Journal Article
%A S. Ishiwata
%T Can one observe the bottleneckness of a space by the heat distribution?
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2017
%P 77-88
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a6/
%G en
%F VVGUM_2017_20_3_a6
S. Ishiwata. Can one observe the bottleneckness of a space by the heat distribution?. Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 20 (2017) no. 3, pp. 77-88. http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a6/

[1] I. Chavel, Eigenvalues in Riemannian geometry, Academic press, New York, 1984, 362 pp. | MR | Zbl

[2] E.\;B. Davies, Heat kernels and spectral geometry, Cambridge Univ. Press, Cambridge, 1990, 208 pp. | MR

[3] A. Grigor'yan, “Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds”, Bull. AMS, 36 (1999), 135–249 | DOI | MR | Zbl

[4] A. Grigor'yan, “Isoperimetric inequalities and capacities on Riemannian manifolds”, The Maz'ya anniversary collection (Rostock, 1998), Oper. Theory Adv. Appl, 109 (1999), 139–153, Birkhauser, Basel | MR | Zbl

[5] A. Grigor'yan, Heat kernel and analysis on manifolds, AMS, Boston, 2009, 482 pp. | MR | Zbl

[6] A. Grigor'yan, “The heat equation on noncompact Riemannian manifolds”, Math. USSR-Sb., 72:1 (1992), 47–77 | DOI | MR | Zbl

[7] A. Grigor'yan, S. Ishiwata, “Heat kernel estimates on a connected sum of two copies of $\mathbb{R}^n$ along a surface of revolution”, Global and Stochastic Analysis, 2:1 (2012), 29–65 | Zbl

[8] A. Grigor'yan, S. Ishiwata, L. Saloff-Coste, Heat kernel estimates on connected sums of parabolic manifolds, to appear in J. Math. Pures Appl.

[9] A. Grigor'yan, L. Saloff-Coste, “Dirichlet heat kernel in the exteior of a compact set”, Comm. Pure Appl. Math, 55 (2002), 93–133 | DOI | MR | Zbl

[10] A. Grigor'yan, L. Saloff-Coste, “Heat kernel on manifolds with ends”, Ann. Inst. Fourier, Grenoble, 59:5 (2009), 1917–1997 | DOI | MR | Zbl

[11] A. Grigor'yan, L. Saloff-Coste, “Hitting probabilities for Brownian motion on Riemannian manifolds”, J. Math. Pures Appl., 81:2 (2002), 115–142 | DOI | MR | Zbl

[12] A. Grigor'yan, L. Saloff-Coste, “Stability results for Harnack inequalities”, Ann. Inst. Fourier, Grenoble, 55:3 (2005), 825–890 | DOI | MR | Zbl

[13] V.\;G. Maz'ya, Sobolev spaces, Springer-Verlag, Berlin, 1985, 488 pp. | MR | Zbl

[14] L. Saloff-Coste, “A note on Poincaré, Sobolev, and Harnack inequalities”, Internat. Math. Res. Notices, 1992, no. 2, 27–38 | DOI | MR | Zbl

[15] L. Saloff-Coste, Aspects on Sobolev type inequalities, Cambridge Univ. Press, Cambridge, 2002, 202 pp. | MR