Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2017_20_3_a6, author = {S. Ishiwata}, title = {Can one observe the bottleneckness of a space by the heat distribution?}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {77--88}, publisher = {mathdoc}, volume = {20}, number = {3}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a6/} }
TY - JOUR AU - S. Ishiwata TI - Can one observe the bottleneckness of a space by the heat distribution? JO - Matematičeskaâ fizika i kompʹûternoe modelirovanie PY - 2017 SP - 77 EP - 88 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a6/ LA - en ID - VVGUM_2017_20_3_a6 ER -
S. Ishiwata. Can one observe the bottleneckness of a space by the heat distribution?. Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 20 (2017) no. 3, pp. 77-88. http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a6/
[1] I. Chavel, Eigenvalues in Riemannian geometry, Academic press, New York, 1984, 362 pp. | MR | Zbl
[2] E.\;B. Davies, Heat kernels and spectral geometry, Cambridge Univ. Press, Cambridge, 1990, 208 pp. | MR
[3] A. Grigor'yan, “Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds”, Bull. AMS, 36 (1999), 135–249 | DOI | MR | Zbl
[4] A. Grigor'yan, “Isoperimetric inequalities and capacities on Riemannian manifolds”, The Maz'ya anniversary collection (Rostock, 1998), Oper. Theory Adv. Appl, 109 (1999), 139–153, Birkhauser, Basel | MR | Zbl
[5] A. Grigor'yan, Heat kernel and analysis on manifolds, AMS, Boston, 2009, 482 pp. | MR | Zbl
[6] A. Grigor'yan, “The heat equation on noncompact Riemannian manifolds”, Math. USSR-Sb., 72:1 (1992), 47–77 | DOI | MR | Zbl
[7] A. Grigor'yan, S. Ishiwata, “Heat kernel estimates on a connected sum of two copies of $\mathbb{R}^n$ along a surface of revolution”, Global and Stochastic Analysis, 2:1 (2012), 29–65 | Zbl
[8] A. Grigor'yan, S. Ishiwata, L. Saloff-Coste, Heat kernel estimates on connected sums of parabolic manifolds, to appear in J. Math. Pures Appl.
[9] A. Grigor'yan, L. Saloff-Coste, “Dirichlet heat kernel in the exteior of a compact set”, Comm. Pure Appl. Math, 55 (2002), 93–133 | DOI | MR | Zbl
[10] A. Grigor'yan, L. Saloff-Coste, “Heat kernel on manifolds with ends”, Ann. Inst. Fourier, Grenoble, 59:5 (2009), 1917–1997 | DOI | MR | Zbl
[11] A. Grigor'yan, L. Saloff-Coste, “Hitting probabilities for Brownian motion on Riemannian manifolds”, J. Math. Pures Appl., 81:2 (2002), 115–142 | DOI | MR | Zbl
[12] A. Grigor'yan, L. Saloff-Coste, “Stability results for Harnack inequalities”, Ann. Inst. Fourier, Grenoble, 55:3 (2005), 825–890 | DOI | MR | Zbl
[13] V.\;G. Maz'ya, Sobolev spaces, Springer-Verlag, Berlin, 1985, 488 pp. | MR | Zbl
[14] L. Saloff-Coste, “A note on Poincaré, Sobolev, and Harnack inequalities”, Internat. Math. Res. Notices, 1992, no. 2, 27–38 | DOI | MR | Zbl
[15] L. Saloff-Coste, Aspects on Sobolev type inequalities, Cambridge Univ. Press, Cambridge, 2002, 202 pp. | MR