Can one observe the bottleneckness of a space by the heat distribution?
Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 20 (2017) no. 3, pp. 77-88

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we discuss a bottleneck structure of a non-compact manifold appearing in the behavior of the heat kernel. This is regarded as an inverse problem of heat kernel estimates on manifolds with ends obtained in [10] and [8]. As a result, if a non-parabolic manifold is divided into two domains by a partition and we have suitable heat kernel estimates between different domains, we obtain an upper bound of the capacity growth of $\delta$-skin of the partition. By this estimate of the capacity, we obtain an upper bound of the first non-zero Neumann eigenvalue of Laplace — Beltrami operator on balls. Under the assumption of an isoperimetric inequality, an upper bound of the volume growth of the $\delta$-skin of the partition is also obtained.
Keywords: heat kernel, manifold with ends, inverse problem.
@article{VVGUM_2017_20_3_a6,
     author = {S. Ishiwata},
     title = {Can one observe the bottleneckness of a space by the heat distribution?},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {77--88},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a6/}
}
TY  - JOUR
AU  - S. Ishiwata
TI  - Can one observe the bottleneckness of a space by the heat distribution?
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2017
SP  - 77
EP  - 88
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a6/
LA  - en
ID  - VVGUM_2017_20_3_a6
ER  - 
%0 Journal Article
%A S. Ishiwata
%T Can one observe the bottleneckness of a space by the heat distribution?
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2017
%P 77-88
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a6/
%G en
%F VVGUM_2017_20_3_a6
S. Ishiwata. Can one observe the bottleneckness of a space by the heat distribution?. Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 20 (2017) no. 3, pp. 77-88. http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a6/