On Phragm\'en --- Lindel\"of principle for Non-divergence Type Elliptic Equations and Mixed Boundary conditions
Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 20 (2017) no. 3, pp. 65-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is dedicated to qualitative study of the solution of the Zaremba-type problem in Lipschitz domain with respect to the elliptic equation in non-divergent form. Main result is Landis type Growth Lemma in spherical layer for Mixed Boundary Value Problem in the class of “admissible domain”. Based on the Growth Lemma Phragmén — Lindelöf theorem is proved at junction point of Dirichlet boundary and boundary over which derivative in non-tangential direction is defined.
Keywords: Mixed Boundary Value Problem, Growth Lemma, Phragmén — Lindelöf theorem, Zaremba-type problem.
Mots-clés : elliptic equation in non-divergent form
@article{VVGUM_2017_20_3_a5,
     author = {A. I. Ibragimov and A. I. Nazarov},
     title = {On {Phragm\'en} --- {Lindel\"of}  principle for {Non-divergence} {Type} {Elliptic} {Equations} and  {Mixed} {Boundary} conditions},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {65--76},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a5/}
}
TY  - JOUR
AU  - A. I. Ibragimov
AU  - A. I. Nazarov
TI  - On Phragm\'en --- Lindel\"of  principle for Non-divergence Type Elliptic Equations and  Mixed Boundary conditions
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2017
SP  - 65
EP  - 76
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a5/
LA  - en
ID  - VVGUM_2017_20_3_a5
ER  - 
%0 Journal Article
%A A. I. Ibragimov
%A A. I. Nazarov
%T On Phragm\'en --- Lindel\"of  principle for Non-divergence Type Elliptic Equations and  Mixed Boundary conditions
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2017
%P 65-76
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a5/
%G en
%F VVGUM_2017_20_3_a5
A. I. Ibragimov; A. I. Nazarov. On Phragm\'en --- Lindel\"of  principle for Non-divergence Type Elliptic Equations and  Mixed Boundary conditions. Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 20 (2017) no. 3, pp. 65-76. http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a5/

[1] H. Aimar, L. Forzani, R. Toledano, “Hölder regularity of solutions of PDE's: a geometrical view”, Comm. PDE, 26:7–8 (2001), 1145–1173 | DOI | MR | Zbl

[2] Yu.\;A. Alkhutov, “On the regularity of boundary points with respect to the Dirichlet problem for second-order elliptic equations”, Math. Notes, 30:3 (1981), 655–660 | DOI | MR

[3] T.\;M. Kerimov, V.\;G. Maz'ya, A.\;A. Novruzov, “An analogue of the Wiener criterion for the Zaremba problem in a cylindrical domain”, Funct. Analysis and Its Applic., 16:4 (1982), 301–303 | DOI | MR

[4] E.\;M. Landis, “On some properties of the solutions of elliptic equations”, Dokl. Akad. Nauk SSSR, 107:4 (1956), 640–643 | MR | Zbl

[5] E.\;M. Landis, “$s$-capacity and its application to the study of solutions of a second order elliptic equation with discontinuous coefficients”, Math. USSR-Sb., 5:2 (1968), 177–204 | DOI | MR

[6] E.\;M. Landis, Second Order Equations of Elliptic and Parabolic Type, AMS, Providence, Rhode Island, 1998, 278 pp. | MR | Zbl

[7] E.\;M. Landis, “Some problems of the qualitative theory of elliptic and parabolic equations”, (in Russian), UMN, 14:1 (85) (1959), 21–85 | MR | Zbl

[8] E.\;M. Landis, “Some problems of the qualitative theory of second order elliptic equations (case of several independent variables)”, Russian Math. Surveys, 18:1 (1963), 1–62 | DOI | MR | Zbl

[9] V.\;G. Maz'ya, “The behavior near the boundary of the solution of the Dirichlet problem for an elliptic equation of the second order in divergence form”, Math. Notes, 2:2 (1967), 610–617 | DOI

[10] N.\;S. Nadirashvili, “Lemma on the interior derivative and uniqueness of the solution of the second boundary value problem for second-order elliptic equations”, (in Russian), Dokl. Akad. Nauk SSSR, 261:4 (1981), 804–808 | MR | Zbl

[11] N.\;S. Nadirashvili, “On the question of the uniqueness of the solution of the second boundary value problem for second-order elliptic equations”, Math. USSR-Sb., 50:2 (1985), 325–341 | DOI | MR | Zbl

[12] M.\;V. Safonov, “Non-divergence Elliptic Equations of Second Order with Unbounded Drift”, Amer. Math. Soc. Transl. Ser. 2, 229 (2010), 211–232, AMS, Providence, RI | MR | Zbl