Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2017_20_3_a3, author = {A. A. Grigor'yan and A. G. Losev}, title = {Dimension of spaces of solutions of the {Schrodinger} equation on noncompact riemannian manifolds}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {34--42}, publisher = {mathdoc}, volume = {20}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a3/} }
TY - JOUR AU - A. A. Grigor'yan AU - A. G. Losev TI - Dimension of spaces of solutions of the Schrodinger equation on noncompact riemannian manifolds JO - Matematičeskaâ fizika i kompʹûternoe modelirovanie PY - 2017 SP - 34 EP - 42 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a3/ LA - ru ID - VVGUM_2017_20_3_a3 ER -
%0 Journal Article %A A. A. Grigor'yan %A A. G. Losev %T Dimension of spaces of solutions of the Schrodinger equation on noncompact riemannian manifolds %J Matematičeskaâ fizika i kompʹûternoe modelirovanie %D 2017 %P 34-42 %V 20 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a3/ %G ru %F VVGUM_2017_20_3_a3
A. A. Grigor'yan; A. G. Losev. Dimension of spaces of solutions of the Schrodinger equation on noncompact riemannian manifolds. Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 20 (2017) no. 3, pp. 34-42. http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a3/
[1] A.\;A. Grigoryan, “On Liouville theorems for harmonic functions with finite Dirichlet integral”, Sbornik: Mathematics, 132:4 (1987), 496–516 | Zbl
[2] A.\;A. Grigoryan, “Dimension of spaces of harmonic functions”, Mathematical Notes, 48:5 (1990), 55–60 | MR
[3] A.\;A. Grigoryan, “On the existence of positive fundamental solution of the Laplace equation on Riemannian manifolds”, Sbornik: Mathematics, 128:3 (1985), 354–363 | MR | Zbl
[4] S.\;A. Korolkov, A.\;G. Losev, “Solutions of elliptic partial differential equations on Riemannian manifolds with ends”, Science Journal of Volgograd State University. Mathematics. Physics, 2011, no. 1 (14), 23–40
[5] A.\;G. Losev, E.\;A. Mazepa, “Bounded solutions of the Schrodinger equation on Riemannian products”, St. Petersburg Mathematical Journal, 13:1 (2001), 84–110 | MR
[6] S.\;Y. Cheng, S.\;T. Yau, “Differential equationson Riemannian manifolds and their geometric applications”, Comm. Pure and Appl. Math., 28:3 (1975), 333–354 | DOI | MR | Zbl
[7] A. Grigor'yan, “Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds”, Bulletin of Amer. Math. Soc., 1999, no. 36, 135–249 | DOI | MR | Zbl
[8] S.\;A. Korolkov, A.\;G. Losev, “Generalized Harmonic Functions of Riemannian Manifolds with Ends”, Mathematische Zeitschrift, 272:1–2 (2012), 459–472 | DOI | MR | Zbl
[9] P. Li, L.\;-F. Tam, “Harmonic functions and the structure of complete manifolds”, J. Diff. Geom., 35:2 (1992), 359–383 | DOI | MR | Zbl
[10] C.\;-J. Sung, L.\;-F. Tam, J. Wang, “Spaces of harmonic functions”, J. London Math. Soc. (2), 2000, no. 3, 789–806 | DOI | MR | Zbl