Pointwise estimates of solutions and existence criteria for sublinear elliptic equations
Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 20 (2017) no. 3, pp. 18-33

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a survey of recent results on positive solutions to sublinear elliptic equations of the type $-Lu+ V \, u^{q}=f$, where $L$ is an elliptic operator in divergence form, $0$, $f\geq 0$ and $V$ is a function that may change sign, in a domain $\Omega \subseteq \mathbb{R}^{n}$, or in a weighted Riemannian manifold, with a positive Green's function $G$. We discuss the existence, as well as global lower and upper pointwise estimates of classical and weak solutions $u$, and conditions that ensure $u \in L^r(\Omega)$ or $u \in W^{1, p} (\Omega)$. Some of these results are applicable to homogeneous sublinear integral equations $ u = G(u^q d \sigma)$ in $\Omega,$ where $0$, and $\sigma=-V$ is a positive locally finite Borel measure in $\Omega$. Here ${G} (f \, d \sigma)(x) =\int_\Omega G(x, y), \, f(y) \, d \sigma(y)$ is an integral operator with positive (quasi) symmetric kernel $G$ on $\Omega \times \Omega$ which satisfies the weak maximum principle. This includes positive solutions, possibly singular, to sublinear equations involving the fractional Laplacian, $$ (-\Delta)^{\frac{\alpha}{2}} u = \sigma \, u^q, \quad u \ge 0 \quad \text{in} \, \, \Omega, $$ where $0$, $0 \alpha n$ and $u=0$ in $\Omega^c$ and at infinity in domains $\Omega \subseteq \mathbb{R}^{n}$ with positive Green's function $G$.
Keywords: sublinear elliptic equations, Green’s function, weak maximum principle, fractional Laplacian.
@article{VVGUM_2017_20_3_a2,
     author = {I. E. Verbitsky},
     title = {Pointwise estimates of solutions and existence criteria for sublinear elliptic equations},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {18--33},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a2/}
}
TY  - JOUR
AU  - I. E. Verbitsky
TI  - Pointwise estimates of solutions and existence criteria for sublinear elliptic equations
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2017
SP  - 18
EP  - 33
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a2/
LA  - en
ID  - VVGUM_2017_20_3_a2
ER  - 
%0 Journal Article
%A I. E. Verbitsky
%T Pointwise estimates of solutions and existence criteria for sublinear elliptic equations
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2017
%P 18-33
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a2/
%G en
%F VVGUM_2017_20_3_a2
I. E. Verbitsky. Pointwise estimates of solutions and existence criteria for sublinear elliptic equations. Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 20 (2017) no. 3, pp. 18-33. http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a2/