Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2017_20_3_a2, author = {I. E. Verbitsky}, title = {Pointwise estimates of solutions and existence criteria for sublinear elliptic equations}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {18--33}, publisher = {mathdoc}, volume = {20}, number = {3}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a2/} }
TY - JOUR AU - I. E. Verbitsky TI - Pointwise estimates of solutions and existence criteria for sublinear elliptic equations JO - Matematičeskaâ fizika i kompʹûternoe modelirovanie PY - 2017 SP - 18 EP - 33 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a2/ LA - en ID - VVGUM_2017_20_3_a2 ER -
%0 Journal Article %A I. E. Verbitsky %T Pointwise estimates of solutions and existence criteria for sublinear elliptic equations %J Matematičeskaâ fizika i kompʹûternoe modelirovanie %D 2017 %P 18-33 %V 20 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a2/ %G en %F VVGUM_2017_20_3_a2
I. E. Verbitsky. Pointwise estimates of solutions and existence criteria for sublinear elliptic equations. Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 20 (2017) no. 3, pp. 18-33. http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a2/
[1] D.\;R. Adams, L.\;I. Hedberg, Function Spaces and Potential Theory, Springer-Verlag, Berlin; Heidelberg; New York, 1996, 368 pp. | MR
[2] A. Ancona, “Some results and examples about the behaviour of harmonic functions and Green's functions with respect to second order elliptic operators”, Nagoya Math. J., 165 (2002), 123–158 | DOI | MR | Zbl
[3] C. Berge, A. Ghouila–Houri, Programming, Games and Transportation Networks, Methuen, London, 1965, 248 pp. | MR
[4] L. Boccardo, L. Orsina, “Sublinear elliptic equations in $L^s$”, Houston Math. J., 20 (1994), 99–114 | MR | Zbl
[5] L. Boccardo, L. Orsina, “Sublinear elliptic equations with singular potentials”, Adv. Nonlin. Studies, 12 (2012), 187–198 | MR | Zbl
[6] H. Brezis, S. Kamin, “Sublinear elliptic equation on $\mathbb{R}^n$”, Manuscr. Math., 74 (1992), 87–106 | DOI | MR | Zbl
[7] C. Cascante, J.\;M. Ortega, I.\;E. Verbitsky, “On {$L^p$}-{$L^q$} trace inequalities”, J. London Math. Soc., 74 (2006), 497–511 | DOI | MR | Zbl
[8] D.\;T. Cao, I.\;E. Verbitsky, “Nonlinear elliptic equations and intrinsic potentials of Wolff type”, J. Funct. Analysis, 272 (2017), 112–165 | DOI | MR | Zbl
[9] D.\;T. Cao, I.\;E. Verbitsky, “Pointwise estimates of Brezis–Kamin type for solutions of sublinear elliptic equations”, Nonlin. Analysis Ser. A: Theory, Methods Appl., 146 (2016), 1–19 | DOI | MR | Zbl
[10] C.\;T. Dat, I.\;E. Verbitsky, “Finite energy solutions of quasilinear elliptic equations with sub-natural growth terms”, Calc. Var. PDE, 52 (2015), 529–546 | DOI | MR | Zbl
[11] M. Frazier, F. Nazarov, I. Verbitsky, “Global estimates for kernels of Neumann series and Green's functions”, J. London Math. Soc., 90 (2014), 903–918 | DOI | MR | Zbl
[12] B. Fuglede, “On the theory of potentials in locally compact spaces”, Acta Math., 103 (1960), 139–215 | DOI | MR | Zbl
[13] A. Grigor'yan, Heat Kernel and Analysis on Manifolds, AMS, Boston, 2009, 482 pp. | MR | Zbl
[14] A. Grigor'yan, “Heat kernels on weighted manifolds and applications”, Contemp. Math., 398 (2006), 93–191 | DOI | MR | Zbl
[15] A. Grigor'yan, W. Hansen, “Lower estimates for a perturbed Green function”, J. Anal. Math., 104 (2008), 25–58 | DOI | MR | Zbl
[16] A. Grigor'yan, I.\;E. Verbitsky I.E., Pointwise estimates of solutions to nonlinear equations for nonlocal operators, 2017
[17] A. Grigor'yan, I.\;E. Verbitsky, “Pointwise estimates of solutions to semilinear elliptic equations and inequalities”, J. d'Analyse Math. (to appear), arXiv: 1511.03188 [math.AP]
[18] W. Hansen, “Uniform boundary Harnack principle and generalized triangle property”, J. Funct. Analysis, 226 (2005), 452–484 | DOI | MR | Zbl
[19] W. Hansen, I. Netuka, “On the Picard principle for ${\Delta} + \mu$”, Math. Z., 270 (2012), 783–807 | DOI | MR | Zbl
[20] M. Marcus, L. Véron, Nonlinear Second Order Elliptic Equations Involving Measures, Walter de Gruyter, Berlin; Boston, 2014, 248 pp. | MR
[21] B. Maurey, Théorèmes de factorisation pour les opérateurs linéaires à valeurs dans les espaces {$L^{p}$}, Soc. Math. France, Paris, 1974, 384 pp. | MR
[22] V. Maz'ya, Sobolev Spaces, with Applications to Elliptic Partial Differential Equations, Springer, Berlin, 2011, 866 pp. | MR | Zbl
[23] S. Quinn, I.\;E. Verbitsky, A sublinear version of Schur's lemma and elliptic PDE, arXiv: 1702.02682 [math.AP] | MR
[24] S. Quinn, I.\;E. Verbitsky, Solutions to sublinear elliptic equations in $W^{1, p}(\Omega)$ and $L^r(\Omega)$ spaces, 2017
[25] S. Quinn, I.\;E. Verbitsky, “Weighted norm inequalities of $(1,q)$-type for integral and fractional maximal operators”, Harmonic Analysis, Partial Differential Equations and Applications, in Honor of Richard L. Wheeden, Ser. Applied and Numerical Harmonic Analysis, 2017, 217–238, Birkhäuser, Basel | MR
[26] E. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, N.J., 1971, 297 pp. | MR | Zbl
[27] I.\;E. Verbitsky, “Sublinear equations and Schur's test for integral operators”, 50 Years with Hardy Spaces, a Tribute to Victor Havin, Operator Theory: Adv. Appl., 261, Birkhäuser, Basel, 2017 (to appear)