Pointwise estimates of solutions and existence criteria for sublinear elliptic equations
Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 20 (2017) no. 3, pp. 18-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a survey of recent results on positive solutions to sublinear elliptic equations of the type $-Lu+ V \, u^{q}=f$, where $L$ is an elliptic operator in divergence form, $0$, $f\geq 0$ and $V$ is a function that may change sign, in a domain $\Omega \subseteq \mathbb{R}^{n}$, or in a weighted Riemannian manifold, with a positive Green's function $G$. We discuss the existence, as well as global lower and upper pointwise estimates of classical and weak solutions $u$, and conditions that ensure $u \in L^r(\Omega)$ or $u \in W^{1, p} (\Omega)$. Some of these results are applicable to homogeneous sublinear integral equations $ u = G(u^q d \sigma)$ in $\Omega,$ where $0$, and $\sigma=-V$ is a positive locally finite Borel measure in $\Omega$. Here ${G} (f \, d \sigma)(x) =\int_\Omega G(x, y), \, f(y) \, d \sigma(y)$ is an integral operator with positive (quasi) symmetric kernel $G$ on $\Omega \times \Omega$ which satisfies the weak maximum principle. This includes positive solutions, possibly singular, to sublinear equations involving the fractional Laplacian, $$ (-\Delta)^{\frac{\alpha}{2}} u = \sigma \, u^q, \quad u \ge 0 \quad \text{in} \, \, \Omega, $$ where $0$, $0 \alpha n$ and $u=0$ in $\Omega^c$ and at infinity in domains $\Omega \subseteq \mathbb{R}^{n}$ with positive Green's function $G$.
Keywords: sublinear elliptic equations, Green’s function, weak maximum principle, fractional Laplacian.
@article{VVGUM_2017_20_3_a2,
     author = {I. E. Verbitsky},
     title = {Pointwise estimates of solutions and existence criteria for sublinear elliptic equations},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {18--33},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a2/}
}
TY  - JOUR
AU  - I. E. Verbitsky
TI  - Pointwise estimates of solutions and existence criteria for sublinear elliptic equations
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2017
SP  - 18
EP  - 33
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a2/
LA  - en
ID  - VVGUM_2017_20_3_a2
ER  - 
%0 Journal Article
%A I. E. Verbitsky
%T Pointwise estimates of solutions and existence criteria for sublinear elliptic equations
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2017
%P 18-33
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a2/
%G en
%F VVGUM_2017_20_3_a2
I. E. Verbitsky. Pointwise estimates of solutions and existence criteria for sublinear elliptic equations. Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 20 (2017) no. 3, pp. 18-33. http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a2/

[1] D.\;R. Adams, L.\;I. Hedberg, Function Spaces and Potential Theory, Springer-Verlag, Berlin; Heidelberg; New York, 1996, 368 pp. | MR

[2] A. Ancona, “Some results and examples about the behaviour of harmonic functions and Green's functions with respect to second order elliptic operators”, Nagoya Math. J., 165 (2002), 123–158 | DOI | MR | Zbl

[3] C. Berge, A. Ghouila–Houri, Programming, Games and Transportation Networks, Methuen, London, 1965, 248 pp. | MR

[4] L. Boccardo, L. Orsina, “Sublinear elliptic equations in $L^s$”, Houston Math. J., 20 (1994), 99–114 | MR | Zbl

[5] L. Boccardo, L. Orsina, “Sublinear elliptic equations with singular potentials”, Adv. Nonlin. Studies, 12 (2012), 187–198 | MR | Zbl

[6] H. Brezis, S. Kamin, “Sublinear elliptic equation on $\mathbb{R}^n$”, Manuscr. Math., 74 (1992), 87–106 | DOI | MR | Zbl

[7] C. Cascante, J.\;M. Ortega, I.\;E. Verbitsky, “On {$L^p$}-{$L^q$} trace inequalities”, J. London Math. Soc., 74 (2006), 497–511 | DOI | MR | Zbl

[8] D.\;T. Cao, I.\;E. Verbitsky, “Nonlinear elliptic equations and intrinsic potentials of Wolff type”, J. Funct. Analysis, 272 (2017), 112–165 | DOI | MR | Zbl

[9] D.\;T. Cao, I.\;E. Verbitsky, “Pointwise estimates of Brezis–Kamin type for solutions of sublinear elliptic equations”, Nonlin. Analysis Ser. A: Theory, Methods Appl., 146 (2016), 1–19 | DOI | MR | Zbl

[10] C.\;T. Dat, I.\;E. Verbitsky, “Finite energy solutions of quasilinear elliptic equations with sub-natural growth terms”, Calc. Var. PDE, 52 (2015), 529–546 | DOI | MR | Zbl

[11] M. Frazier, F. Nazarov, I. Verbitsky, “Global estimates for kernels of Neumann series and Green's functions”, J. London Math. Soc., 90 (2014), 903–918 | DOI | MR | Zbl

[12] B. Fuglede, “On the theory of potentials in locally compact spaces”, Acta Math., 103 (1960), 139–215 | DOI | MR | Zbl

[13] A. Grigor'yan, Heat Kernel and Analysis on Manifolds, AMS, Boston, 2009, 482 pp. | MR | Zbl

[14] A. Grigor'yan, “Heat kernels on weighted manifolds and applications”, Contemp. Math., 398 (2006), 93–191 | DOI | MR | Zbl

[15] A. Grigor'yan, W. Hansen, “Lower estimates for a perturbed Green function”, J. Anal. Math., 104 (2008), 25–58 | DOI | MR | Zbl

[16] A. Grigor'yan, I.\;E. Verbitsky I.E., Pointwise estimates of solutions to nonlinear equations for nonlocal operators, 2017

[17] A. Grigor'yan, I.\;E. Verbitsky, “Pointwise estimates of solutions to semilinear elliptic equations and inequalities”, J. d'Analyse Math. (to appear), arXiv: 1511.03188 [math.AP]

[18] W. Hansen, “Uniform boundary Harnack principle and generalized triangle property”, J. Funct. Analysis, 226 (2005), 452–484 | DOI | MR | Zbl

[19] W. Hansen, I. Netuka, “On the Picard principle for ${\Delta} + \mu$”, Math. Z., 270 (2012), 783–807 | DOI | MR | Zbl

[20] M. Marcus, L. Véron, Nonlinear Second Order Elliptic Equations Involving Measures, Walter de Gruyter, Berlin; Boston, 2014, 248 pp. | MR

[21] B. Maurey, Théorèmes de factorisation pour les opérateurs linéaires à valeurs dans les espaces {$L^{p}$}, Soc. Math. France, Paris, 1974, 384 pp. | MR

[22] V. Maz'ya, Sobolev Spaces, with Applications to Elliptic Partial Differential Equations, Springer, Berlin, 2011, 866 pp. | MR | Zbl

[23] S. Quinn, I.\;E. Verbitsky, A sublinear version of Schur's lemma and elliptic PDE, arXiv: 1702.02682 [math.AP] | MR

[24] S. Quinn, I.\;E. Verbitsky, Solutions to sublinear elliptic equations in $W^{1, p}(\Omega)$ and $L^r(\Omega)$ spaces, 2017

[25] S. Quinn, I.\;E. Verbitsky, “Weighted norm inequalities of $(1,q)$-type for integral and fractional maximal operators”, Harmonic Analysis, Partial Differential Equations and Applications, in Honor of Richard L. Wheeden, Ser. Applied and Numerical Harmonic Analysis, 2017, 217–238, Birkhäuser, Basel | MR

[26] E. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, N.J., 1971, 297 pp. | MR | Zbl

[27] I.\;E. Verbitsky, “Sublinear equations and Schur's test for integral operators”, 50 Years with Hardy Spaces, a Tribute to Victor Havin, Operator Theory: Adv. Appl., 261, Birkhäuser, Basel, 2017 (to appear)