Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2017_20_3_a1, author = {A. V. Boluchevskaya and V. A. Klyachin and M. E. Sapraliev}, title = {Estimations of clearance radius for finite subset of a unit ball in ${\mathbb{R}}^{n}$}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {6--17}, publisher = {mathdoc}, volume = {20}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a1/} }
TY - JOUR AU - A. V. Boluchevskaya AU - V. A. Klyachin AU - M. E. Sapraliev TI - Estimations of clearance radius for finite subset of a unit ball in ${\mathbb{R}}^{n}$ JO - Matematičeskaâ fizika i kompʹûternoe modelirovanie PY - 2017 SP - 6 EP - 17 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a1/ LA - ru ID - VVGUM_2017_20_3_a1 ER -
%0 Journal Article %A A. V. Boluchevskaya %A V. A. Klyachin %A M. E. Sapraliev %T Estimations of clearance radius for finite subset of a unit ball in ${\mathbb{R}}^{n}$ %J Matematičeskaâ fizika i kompʹûternoe modelirovanie %D 2017 %P 6-17 %V 20 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a1/ %G ru %F VVGUM_2017_20_3_a1
A. V. Boluchevskaya; V. A. Klyachin; M. E. Sapraliev. Estimations of clearance radius for finite subset of a unit ball in ${\mathbb{R}}^{n}$. Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 20 (2017) no. 3, pp. 6-17. http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a1/
[1] V.\;A. Klyachin, “Modified Delaunay empty sphere condition in the problem of approximation of the gradient”, Izvestiya: Mathematics, 80:3 (2016), 95–102 | DOI | MR | Zbl
[2] V.\;A. Klyachin, “On a multidimensional analogue of the Schwarz example”, Izvestiya: Mathematics, 76:4 (2012), 41–48 | DOI | MR | Zbl
[3] V.\;A. Klyachin, A.\;A. Shirokiy, “The Delaunay triangulation for multidimensional surfaces and its approximative properties”, Russian Mathematics, 2012, no. 1, 31–39 | Zbl
[4] A.\;V. Skvortsov, N.\;S. Mirza, Algorithms of triangulations design and analisys, Izd-vo Tom. un-ta, Tomsk, 2006, 168 pp.
[5] B.\;N. Delaunay, “Sur la sphere vide. A la memoire de Georges Voronoi”, Izvestiya AN SSSR, 1934, no. 6, 793–800
[6] J.\;R. Shewchuk, What is a good linear finite element? Interpolation, conditioning, anisotropy, and quality measures, preprint, Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley, 2002, 66 pp. | MR