Keywords: empty sphere condition, convex set, convex function, convex hull.
@article{VVGUM_2017_20_3_a1,
author = {A. V. Boluchevskaya and V. A. Klyachin and M. E. Sapraliev},
title = {Estimations of clearance radius for finite subset of a unit ball in ${\mathbb{R}}^{n}$},
journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
pages = {6--17},
year = {2017},
volume = {20},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a1/}
}
TY - JOUR
AU - A. V. Boluchevskaya
AU - V. A. Klyachin
AU - M. E. Sapraliev
TI - Estimations of clearance radius for finite subset of a unit ball in ${\mathbb{R}}^{n}$
JO - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY - 2017
SP - 6
EP - 17
VL - 20
IS - 3
UR - http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a1/
LA - ru
ID - VVGUM_2017_20_3_a1
ER -
%0 Journal Article
%A A. V. Boluchevskaya
%A V. A. Klyachin
%A M. E. Sapraliev
%T Estimations of clearance radius for finite subset of a unit ball in ${\mathbb{R}}^{n}$
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2017
%P 6-17
%V 20
%N 3
%U http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a1/
%G ru
%F VVGUM_2017_20_3_a1
A. V. Boluchevskaya; V. A. Klyachin; M. E. Sapraliev. Estimations of clearance radius for finite subset of a unit ball in ${\mathbb{R}}^{n}$. Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 20 (2017) no. 3, pp. 6-17. http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a1/
[1] V.\;A. Klyachin, “Modified Delaunay empty sphere condition in the problem of approximation of the gradient”, Izvestiya: Mathematics, 80:3 (2016), 95–102 | DOI | MR | Zbl
[2] V.\;A. Klyachin, “On a multidimensional analogue of the Schwarz example”, Izvestiya: Mathematics, 76:4 (2012), 41–48 | DOI | MR | Zbl
[3] V.\;A. Klyachin, A.\;A. Shirokiy, “The Delaunay triangulation for multidimensional surfaces and its approximative properties”, Russian Mathematics, 2012, no. 1, 31–39 | Zbl
[4] A.\;V. Skvortsov, N.\;S. Mirza, Algorithms of triangulations design and analisys, Izd-vo Tom. un-ta, Tomsk, 2006, 168 pp.
[5] B.\;N. Delaunay, “Sur la sphere vide. A la memoire de Georges Voronoi”, Izvestiya AN SSSR, 1934, no. 6, 793–800
[6] J.\;R. Shewchuk, What is a good linear finite element? Interpolation, conditioning, anisotropy, and quality measures, preprint, Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley, 2002, 66 pp. | MR