Neutron stars with anisotropic matter
Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 1 (2017), pp. 90-102.

Voir la notice de l'article provenant de la source Math-Net.Ru

We have studied equilibrium, strongly gravitating configurations consisting of a neutron fluid with an anisotropic pressure. The fluid is described by two realistic equations of state (the softer SLy and the stiffer BSk21), and the anisotropy is modeled by the expression that takes into account both the local properties of the fluid (via the pressure) and the quasilocal properties of the configuration (via the compactness). Our purpose was to clarify how the presence of such an anisotropy influences the mass—radius relation and the internal structure of the models of neutron stars under consideration. In doing so, we have employed the recent astrophysical measurements of the mass and radius of neutron stars known from the literature. It enabled us to choose the anisotropy parameter $\alpha$ in such a way as to satisfy the allowed observational constraints. It was shown that when one chooses negative values of the parameter $\alpha$ for the aforementioned equations of state, it is possible to shift the mass—radius curve in such a way as to satisfy the observational constraints well enough. This situation differs considerably from the isotropic case (when $\alpha=0$) where the mass—radius curve either falls just slightly in the region of the observational constraints (in the case of the SLy equation of state) or lies completely outside this region for the stiffer BSk21 equation of state. Also, apart from the influence on the mass—radius relation, the presence of the anisotropy results in considerable changes in the distribution of the neutron matter energy density and pressure along the radius of the configurations. Namely, the greater (modulus) the value of the anisotropy parameter, a greater concentration of matter toward the center takes place. At the same time, for large negative $\alpha$ the difference between the tangential and radial pressures becomes greater, and, in the case of the stiff BSk21 equation of state, the tangential pressure can even become negative in the exterior regions of the star. Using the linear stability analysis, we have determined the region of stable solutions for the anisotropic systems under consideration. It was shown that the inclusion of the anisotropy enables one to cover by stable branches of the mass—radius curves a considerable part of the region allowed by the observations.
Keywords: relativistic stars, mass—radius relation, realistic equation of state, observational data.
Mots-clés : anisotropic pressure
@article{VVGUM_2017_1_a9,
     author = {E. M. Bakirova and Iu. M. Salamatina},
     title = {Neutron stars with anisotropic matter},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {90--102},
     publisher = {mathdoc},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2017_1_a9/}
}
TY  - JOUR
AU  - E. M. Bakirova
AU  - Iu. M. Salamatina
TI  - Neutron stars with anisotropic matter
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2017
SP  - 90
EP  - 102
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2017_1_a9/
LA  - ru
ID  - VVGUM_2017_1_a9
ER  - 
%0 Journal Article
%A E. M. Bakirova
%A Iu. M. Salamatina
%T Neutron stars with anisotropic matter
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2017
%P 90-102
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2017_1_a9/
%G ru
%F VVGUM_2017_1_a9
E. M. Bakirova; Iu. M. Salamatina. Neutron stars with anisotropic matter. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 1 (2017), pp. 90-102. http://geodesic.mathdoc.fr/item/VVGUM_2017_1_a9/

[1] A.\;Y. Potekhin, A.\;F. Fantina, N. Chamel, J.\;M. Pearson, S. Goriely, “Analytical representations of unified equations of state for neutron-star matter”, Astron. Astrophys., 560 (2013), A48, 1–13 | DOI

[2] S.\;S. Bayin, “Anisotropic Fluid Spheres in General Relativity”, Phys. Rev. D, 26 (1982), 1262–1274 | DOI | MR

[3] H. Bondi, “Anisotropic spheres in general relativity”, Mon. Not. R. Astron. Soc., 259 (1992), 365–368 | DOI

[4] S. Chandrasekhar, “The Dynamical Instability of Gaseous Masses Approaching the Schwarzschild Limit in General Relativity”, Astrophys. J., 140 (1964), 417–433 | DOI | MR | Zbl

[5] F. Douchin, P. Haensel, “A unified equation of state of dense matter and neutron star structure”, Astron. Astrophys., 380 (2001), 151–167 | DOI

[6] E.\;J. Ferrer, V. de la Incera, J.\;P. Keith, P.\;L. Springsteen, “Equation of State of a Dense and Magnetized Fermion System”, Phys. Rev. C, 82:6 (2010), 065802 | DOI

[7] N.\;K. Glendenning, Compact stars: Nuclear physics, particle physics and general relativity, Springer Science Business Media, Berlin, 2012, 459 pp. | MR

[8] P. Haensel, A.\;Y. Potekhin, “Analytical representations of unified equations of state of neutron-star matter”, Astron. Astrophys., 428 (2004), 191–197 | DOI | Zbl

[9] H. Heintzmann, W. Hillebrandt, “Neutron stars with an anisotropic equation of state: mass, redshift and stability”, Astron. Astrophys., 38 (1975), 51–55

[10] L. Herrera, J. Ponce de Leon, “Isotropic and anisotropic charged spheres admitting a one-parameter group of conformal motions”, J. Math. Phys., 26 (1985), 2302–2307 | DOI | MR | Zbl

[11] L. Herrera, N.\;O. Santos, “Local anisotropy in self-gravitating systems”, Phys. Rep., 286 (1997), 53–130 | DOI | MR

[12] L. Herrera, W. Barreto, “General relativistic polytropes for anisotropic matter: The general formalism and applications”, Phys. Rev. D, 88 (2013), 084022 | DOI

[13] D. Horvat, S. Ilijic, A. Marunovic, “Radial pulsations and stability of anisotropic stars with quasi-local equation of state”, Classical Quantum Gravity, 28:2 (2010), 025009 | DOI | MR

[14] B.\;V. Ivanov, “The importance of anisotropy for relativistic fluids with spherical symmetry”, Int. J. Theor. Phys., 49 (2010), 1236–1243 | DOI | MR | Zbl

[15] M.\;K. Mak, T. Harko, “Anisotropic stars in general relativity”, Proc. R. Soc. Lond. A, 459 (2003), 393–408 | DOI | MR | Zbl

[16] F. Ozel, G. Baym, T. Guver, “Astrophysical Measurement of the Equation of State of Neutron Star Matter”, Phys. Rev. D, 82 (2010), 101301 | DOI

[17] A. Perez Martinez, H. Perez Rojas, H. Mosquera Cuesta, “Anisotropic Pressures in Very Dense Magnetized Matter”, Int. J. Mod. Phys. D, 17 (2008), 2107–2123 | DOI | Zbl

[18] A.\;Y. Potekhin, “The physics of neutron stars”, Phys. Usp., 53 (2010), 1235–1256 | DOI

[19] M. Chaichian, S.\;S. Masood, C. Montonen, A. Perez Martinez, H. Perez Rojas, “Quantum magnetic and gravitational collapse”, Phys. Rev. Lett., 84 (2000), 5261–5264 | DOI

[20] M. Ruderman, “Pulsars: structure and dynamics”, Annu. Rev. Astron. Astrophys., 10 (1972), 427–476 | DOI

[21] R.\;F. Sawyer, “Condensed pi-phase in neutron star matter”, Phys. Rev. Lett., 29 (1972), 382–385 | DOI

[22] A.\;I. Sokolov, “Phase transitions in a superfluid neutron fluid”, Sov. Phys. JETP, 52 (1980), 575–576