Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2017_1_a6, author = {A. Yu. Perevaryukha}, title = {Destruction of the relaxation oscillations in the model of extreme dynamics of the population}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {55--65}, publisher = {mathdoc}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2017_1_a6/} }
TY - JOUR AU - A. Yu. Perevaryukha TI - Destruction of the relaxation oscillations in the model of extreme dynamics of the population JO - Matematičeskaâ fizika i kompʹûternoe modelirovanie PY - 2017 SP - 55 EP - 65 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VVGUM_2017_1_a6/ LA - ru ID - VVGUM_2017_1_a6 ER -
%0 Journal Article %A A. Yu. Perevaryukha %T Destruction of the relaxation oscillations in the model of extreme dynamics of the population %J Matematičeskaâ fizika i kompʹûternoe modelirovanie %D 2017 %P 55-65 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VVGUM_2017_1_a6/ %G ru %F VVGUM_2017_1_a6
A. Yu. Perevaryukha. Destruction of the relaxation oscillations in the model of extreme dynamics of the population. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 1 (2017), pp. 55-65. http://geodesic.mathdoc.fr/item/VVGUM_2017_1_a6/
[1] S.\;A. Kashchenko, “The Dynamics of the Logistic Equation with Delay”, Mathematical Notes, 98 (2015), 85–100 | DOI | Zbl
[2] N. Bacaer, Short History of Mathematical Population Dynamics, Springer-Verlag, London, 2011, 198 pp. | MR | Zbl
[3] A.\;D. Bazykin, Nonlinear Dynamics of Interacting Populations, WSP, London, 1998, 198 pp. | MR
[4] K. Gopalsamy, M. Kulenovic, G. Ladas, “Time lags in a «food-limited» population madel”, Applicable Analysis, 31:3 (1988), 225–237 | DOI | MR | Zbl
[5] D. Gray, “Historical spruce budworm defoliation records adjusted for insecticide protection in New Brunswick”, Journal of the Acadian Entomological Society, 115:1 (2007), 1–6
[6] G. Hutchinson, An Introduction to Population Ecology, Yale University Press, New Haven, 1978, 234 pp. | MR | Zbl
[7] A. Kolesov, E. Mishchenko, Yu. Kolesov, “A modification of Hutchinson's equation”, Computational Mathematics and Mathematical Physics, 2010, no. 12, 1990–2002 | DOI | Zbl
[8] A. Kolesov, Yu. Kolesov, Relaxation Oscillations in Mathematical Models of Ecology, AMS, Rhode Island, 1993, 128 pp. | MR
[9] G. Ladas, C. Qian, “Oscillation and global stability in a delay logistic equation”, Dynamics and Stability of Systems, 9:2 (1994), 153–162 | DOI | MR | Zbl
[10] A. Nicholson, “An outline of the dynamics of animal populations”, Australian Journal of Zoology, 2 (1954), 9–65 | DOI
[11] A.\;Yu. Perevaryukha, “A model of development of a spontaneous outbreak of an insect with aperiodic dynamics”, Entomological Review, 95 (2015), 397–405 | DOI
[12] R. Ruan, “Delay Differential Equations in Single Species Dynamics”, Delay Differential Equations and Applications, Springer, Berlin, 2006, 477–517 | DOI | MR