Destruction of the relaxation oscillations in the model of extreme dynamics of the population
Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 1 (2017), pp. 55-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article within the context of the simulation of nontrivial changes in the development of population processes is offered equation with delay $\dot x = \lambda x(t)f(x(t-\tau)) \psi(x(t-\tau))$, where $\lambda, x>0,\ \psi(x) $—the function changes sign. In the new model of interpretation subthreshold carrying capacity differs from the asymptotic equilibrium of the balance $x(t) \rightarrow K$ from the equation Verhulst–Pearl. Computational investigation of loss of stability of a singular point in addition to the well-known scenario of the formation of the global cycle of orbital stability in the logistic equation with delay indicates the existence of another version of metamorphosis—the destruction occurred after the change of reproductive parameter transient relaxation oscillations and the advent of unlimited from the top pseudoperiodic solutions. With increasing amplitude of the relaxation oscillations original scenario for catastrophic completing of the growth phase of population size is realized, depending not on achieving a critical minimum and maximum of the situation in the case of exceeding the permissible unstable population supporting capacity of the environment. The model is applicable for describing outbreaks of mass reproduction of many species of insects, which strongly affect availability of its breeding environment.
Keywords: model of population fluctuations, equation with delay, cycles and outbreaks, occasional ecological scenarios, threshold situations.
@article{VVGUM_2017_1_a6,
     author = {A. Yu. Perevaryukha},
     title = {Destruction of the relaxation oscillations in the model of extreme dynamics of the population},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {55--65},
     publisher = {mathdoc},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2017_1_a6/}
}
TY  - JOUR
AU  - A. Yu. Perevaryukha
TI  - Destruction of the relaxation oscillations in the model of extreme dynamics of the population
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2017
SP  - 55
EP  - 65
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2017_1_a6/
LA  - ru
ID  - VVGUM_2017_1_a6
ER  - 
%0 Journal Article
%A A. Yu. Perevaryukha
%T Destruction of the relaxation oscillations in the model of extreme dynamics of the population
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2017
%P 55-65
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2017_1_a6/
%G ru
%F VVGUM_2017_1_a6
A. Yu. Perevaryukha. Destruction of the relaxation oscillations in the model of extreme dynamics of the population. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 1 (2017), pp. 55-65. http://geodesic.mathdoc.fr/item/VVGUM_2017_1_a6/

[1] S.\;A. Kashchenko, “The Dynamics of the Logistic Equation with Delay”, Mathematical Notes, 98 (2015), 85–100 | DOI | Zbl

[2] N. Bacaer, Short History of Mathematical Population Dynamics, Springer-Verlag, London, 2011, 198 pp. | MR | Zbl

[3] A.\;D. Bazykin, Nonlinear Dynamics of Interacting Populations, WSP, London, 1998, 198 pp. | MR

[4] K. Gopalsamy, M. Kulenovic, G. Ladas, “Time lags in a «food-limited» population madel”, Applicable Analysis, 31:3 (1988), 225–237 | DOI | MR | Zbl

[5] D. Gray, “Historical spruce budworm defoliation records adjusted for insecticide protection in New Brunswick”, Journal of the Acadian Entomological Society, 115:1 (2007), 1–6

[6] G. Hutchinson, An Introduction to Population Ecology, Yale University Press, New Haven, 1978, 234 pp. | MR | Zbl

[7] A. Kolesov, E. Mishchenko, Yu. Kolesov, “A modification of Hutchinson's equation”, Computational Mathematics and Mathematical Physics, 2010, no. 12, 1990–2002 | DOI | Zbl

[8] A. Kolesov, Yu. Kolesov, Relaxation Oscillations in Mathematical Models of Ecology, AMS, Rhode Island, 1993, 128 pp. | MR

[9] G. Ladas, C. Qian, “Oscillation and global stability in a delay logistic equation”, Dynamics and Stability of Systems, 9:2 (1994), 153–162 | DOI | MR | Zbl

[10] A. Nicholson, “An outline of the dynamics of animal populations”, Australian Journal of Zoology, 2 (1954), 9–65 | DOI

[11] A.\;Yu. Perevaryukha, “A model of development of a spontaneous outbreak of an insect with aperiodic dynamics”, Entomological Review, 95 (2015), 397–405 | DOI

[12] R. Ruan, “Delay Differential Equations in Single Species Dynamics”, Delay Differential Equations and Applications, Springer, Berlin, 2006, 477–517 | DOI | MR