Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2017_1_a5, author = {T. K. Yuldashev}, title = {Nonlocal boundary value problem for a nonhomogeneous pseudoparabolic-type integro-differential equation with degenerate kernel}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {42--54}, publisher = {mathdoc}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2017_1_a5/} }
TY - JOUR AU - T. K. Yuldashev TI - Nonlocal boundary value problem for a nonhomogeneous pseudoparabolic-type integro-differential equation with degenerate kernel JO - Matematičeskaâ fizika i kompʹûternoe modelirovanie PY - 2017 SP - 42 EP - 54 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VVGUM_2017_1_a5/ LA - ru ID - VVGUM_2017_1_a5 ER -
%0 Journal Article %A T. K. Yuldashev %T Nonlocal boundary value problem for a nonhomogeneous pseudoparabolic-type integro-differential equation with degenerate kernel %J Matematičeskaâ fizika i kompʹûternoe modelirovanie %D 2017 %P 42-54 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VVGUM_2017_1_a5/ %G ru %F VVGUM_2017_1_a5
T. K. Yuldashev. Nonlocal boundary value problem for a nonhomogeneous pseudoparabolic-type integro-differential equation with degenerate kernel. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 1 (2017), pp. 42-54. http://geodesic.mathdoc.fr/item/VVGUM_2017_1_a5/
[1] S.\;D. Algazin, I.\;A. Kiyko, Flutter of Plates and Shells, Nauka Publ., M., 2006, 248 pp.
[2] A.\;A. Andreev, Yu.\;O. Yakovleva, “The Characteristic Problem for a System of Hyperbolic Differential Equations of the Third Order of General Form With Nonmultiple Characteristics”, Vestnik of Samara State Technical University. Physical and Mathematical Sciences, 30:1 (2013), 31–36 | DOI
[3] A.\;D. Baev, S.\;A. Shabrov, Meach Mon, “Uniqueness of the Solution Mathematical Model of Forced String Oscillation Singularities”, Vestnik of Voronezh State University. Physics. Mathematics, 2014, no. 1, 50–55 | MR
[4] M.\;Kh. Beshtokov, “Numerical Method for Solving One Nonlocal Boundary Value Problem for a Third-Order Hyperbolic Equation”, Computational Math. and Mathematical Physics, 54:9 (2014), 1497–1514 | DOI | MR | Zbl
[5] D.\;G. Gordeziani, G.\;A. Avilishbili, “Solving the Nonlocal Problems for One-Dimensional Medium Oscillation”, Mathematical Modeling, 12:1 (2000), 94–103 | MR | Zbl
[6] A.\;A. Zamyshlyaeva, “Sobolev-Type Mathematical Models of Higher Order”, Vestnik of South-Ural State University. Mathematical modeling and programming, 7:2 (2014), 5–28 | MR | Zbl
[7] O.\;S. Zikirov, “Dirichlet problem for third-order hyperbolic equations”, Russian Mathematics, 2014, no. 7, 63–71 | MR | Zbl
[8] L.\;S. Pulkina, “A nonlocal problem for a hyperbolic equation with integral conditions of the 1st kind with time-dependent kernels”, Russian Mathematics, 2012, no. 10, 32–44 | Zbl
[9] A. Sopuev, N.\;K. Arkabaev, “Conjugation Problems for Linear Pseudoparabolic Equations of Third Order”, Vestnik of Tomsk State University, 21:1 (2013), 1623
[10] M.\;V. Turbin, “Investigation of Initial-Boundary Value Problem for the Herschel–Bulkley Mathematical Fluid Model”, Vestnik of Voronezh State University. Physics. Mathematics, 2013, no. 2, 246–257
[11] S.\;A. Shabrov, “On a Mathematical Model of Small Deformations of a Bar System With Internal Features”, Vestnik of Voronezh State University. Physics. Mathematics, 2013, no. 1, 232–250
[12] M.\;Kh. Shkhanukov, “Some Boundary Value Problems for a Third-Order Equation Arising in the Simulation of Fluid Flow in Porous Media”, Differential Equations, 18:4 (1982), 689–699 | MR | Zbl
[13] T.\;K. Yuldashev, “Nonlinear Integro-Differential Equation of Pseudoparabolic Type With Nonlocal Integral Conditionv”, Science Journal of Volgograd state university. Mathematics. Physics, 2016, no. 1, 11–23
[14] T.\;K. Yuldashev, “A certain Fredholm partial integro-differential equation of the third order”, Russian Mathematics, 2015, no. 9, 74–79 | Zbl
[15] T.\;K. Yuldashev, “Inverse Problem for Nonlinear Fredholm Integro-Differential Equation of Fourth Order with Degenerate Kernel”, Vestnik of Samara State Technical University. Physical and Mathematical Sciences, 19:4 (2015), 736–749 | DOI
[16] T.\;K. Yuldashev, “Inverse Problem for a Partial Fredholm Integro-Differential Equation of Third Order”, Vestnik of Samara State Technical University. Physical and Mathematical Sciences, 34:1 (2014), 56–65 | DOI
[17] T.\;K. Yuldashev, “Inverse Problem for a Nonlinear Integro-Differential Equation of the Third Order”, Vestnik of Samara State University. Seria of Natural Sciences, 2013, no. 1, 58–66 | MR | Zbl
[18] T.\;K. Yuldashev, “Mixed-Type Bussinesq Differential Equation”, Science Journal of Volgograd State University. Mathematics. Physics, 2016, no. 2, 13–26
[19] D.\;J. Benney, J.\;C. Luke, “Interactions of permanent waves of finite amplitude”, Journ. Math. Phys., 43 (1964), 309313 | DOI | MR