Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2017_1_a3, author = {A. A. Ryzhkova}, title = {Harmonic analysis of periodic sequences at infinity}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {22--32}, publisher = {mathdoc}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2017_1_a3/} }
A. A. Ryzhkova. Harmonic analysis of periodic sequences at infinity. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 1 (2017), pp. 22-32. http://geodesic.mathdoc.fr/item/VVGUM_2017_1_a3/
[1] A.\;G. Baskakov, Harmonic Analysis of Linear Operators, Izd-vo VGU, Voronezh, 1987, 165 pp.
[2] A.\;G. Baskakov, “Harmonic and Spectral Analysis of Operators with Limited Powers and Limited Semigroups of Operators on a Banach Space”, Mathematical Notes, 97:2 (2015), 174–190 | DOI | Zbl
[3] A.\;G. Baskakov, “The Study of Linear Differential Equations by Methods of Spectral Theory of Differential Operators and Linear Relations”, Russian Mathematical Surveys, 68:1 (409) (2013), 77–128 | DOI | Zbl
[4] A.\;G. Baskakov, N.\;S. Kaluzhina, D.\;M. Polyakov, “Slowly Changing at Infinity Semigroups of Operators”, Russian Mathematics, 2014, no. 7, 3–14 | DOI
[5] A.\;G. Baskakov, N.\;S. Kaluzhina, “Beurling’s Theorem for Functions with a Significant Range of Homogeneous Spaces and the Stabilization of Solutions of Parabolic Equations”, Mathematical Notes, 92:5 (2012), 643–661 | DOI | Zbl
[6] A.\;N. Kolmogorov, S.\;V. Fomin, Elements of the Theory of Functions and Functional Analysis, Nauka Publ., M., 1976, 143 pp.
[7] U. Rudin, Function Analysis, Mir Publ., M., 1975, 444 pp.
[8] A.\;A. Ryzhkova, I.\;A. Trishina, “Periodic Functions at Infinity”, Nauch. vedomosti Belgorod. gos. un-ta. Seriya: Matematika. Fizika, 36:19 (2014), 71–75
[9] A.\;A. Ryzhkova, I.\;A. Trishina, “On Almost Periodic at Infinity of Solutions of Difference Equations”, Izv. Sarat. un-ta. Novaya ser. Ser. Matematika. Mekhanika. Informatika, 15:1 (2015), 45–49 | DOI | Zbl