Harmonic analysis of periodic sequences at infinity
Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 1 (2017), pp. 22-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $ X $ be a complex Banach space and $ \mathrm{End} X $ be a Banach algebra. By $ l ^ {\infty} = l ^ {\infty} (Z, X) $ we denote the Banach space of two-sided sequences of vectors in X with the norm $ \|x\|_ {\infty} =\sup \limits_ {n\in \mathbb{Z}} \|x(n)\| $, $ X: \mathbb{Z} \rightarrow X $, $ x \in l ^ {\infty} $. By $ c_0 $ we denote the (closed) subspace of sequences of $ l ^ {\infty} $, decreasing at infinity, i.e. $ \lim \limits_ {n \rightarrow \infty} \|x (n)\| = 0 $. In the space $ l ^ {\infty} $, let us consider the group of operators $ S (n): l ^ {\infty } \rightarrow l ^ {\infty} $, $ n \in \mathbb{Z}$ where $ (S (n) x) (k) = x (k + n) $, $ k \in \mathbb{Z}, x \in l ^ {\infty}$. The sequence $ x \in\ l^{\infty} $ is called slowly varying at infinity if $S(1) x - x \in c_0$, i.e. $$ \lim_{N \rightarrow \infty}\|x (n+1)-x (n)\|= 0. $$ The sequence ${x} $ of $ {l} {} ^ {\infty} $ is called periodic at infinity period $ N \geq 1 $, $ N \in \mathbb{N} $, if $ {S} (N) {x} - {x} \in {c}_0$. An example of a sequence slowly varying at infinity is sequence $ x (n) = \sin (\ln (\alpha + n)) $, $ n \in \mathbb{Z} $, where $\alpha > 0 $. The set of slowly varying at infinity sequences form a closed subspace of $ l ^ {\infty} $ which is denoted by $ l_ {sl, \infty} ^ {\infty} $. The set of periodic at infinity period $N$ form a closed subspace of $ l ^ {\infty} $, which is denoted by $ l_ {N, \infty} ^ {\infty} $. Note that $ c_0 \subset {l_ {sl, \infty} ^ {\infty} }\subset l_{N, \infty}^{\infty }$ for any $ N \geq 1 $. Suppose that $ \gamma_k = e^{\frac {i2 \pi k}{N}} $, $ 0 \leq k \leq N-1 $,—the roots of unity. Note that they form a group, denoted further by $ G_N $. One of the main results is Theorem 1. Each periodic at infinity sequence $ x \in l ^{ \infty} $ period $ N \geq 1 $ representation of the form \begin{equation*} x(n)=\sum\limits_{k=0}^{N-1} x_k(n)\gamma_k ^n, \end{equation*} where $ x_k \in l_ {sl, \infty} ^{ \infty}, 0 \leq k \leq N-1 $. In a Banach space $l ^ {\infty} (\mathbb {Z}, X) $, where $ X$—finite-dimensional Banach space, consider the difference equation \begin{equation} X (n + N) = Bx (n) + y (n),\ n \in \mathbb {Z}, \tag{1} \end{equation} where $ y \in c_0 (\mathbb {Z}, X), B\in \mathrm{End} X $ with the property $ \Sigma_0 = \sigma (B) \cap \mathbb {T} =$ $\{\gamma_1, \gamma_2 ..., \gamma_m\}$—set of simple eigenvalues, where $\mathbb{T} = \{\lambda \in \mathbb {C}: |\lambda| = 1\} $ and $ \sigma (B) $ denotes the spectrum of the operator $B$. Theorem 2. Each bounded solution $ x: \mathbb {Z} \rightarrow X $ of the equation (1) is a periodic sequence at infinity, which is a representation of the form $$ X (n) = \sum \limits_ {k = 1} ^ {N} x_k (n) \gamma ^ n_k, $$ where $ x_k \in l ^ {\infty} _ {sl, \infty} $, $ \gamma_k \in \mathbb {T} $, $ 0 \leq k \leq $ N-1.
Keywords: periodic sequences at infinity, difference equations, eigenvalues, projectors.
Mots-clés : spectral decomposition
@article{VVGUM_2017_1_a3,
     author = {A. A. Ryzhkova},
     title = {Harmonic analysis of periodic sequences at infinity},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {22--32},
     publisher = {mathdoc},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2017_1_a3/}
}
TY  - JOUR
AU  - A. A. Ryzhkova
TI  - Harmonic analysis of periodic sequences at infinity
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2017
SP  - 22
EP  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2017_1_a3/
LA  - ru
ID  - VVGUM_2017_1_a3
ER  - 
%0 Journal Article
%A A. A. Ryzhkova
%T Harmonic analysis of periodic sequences at infinity
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2017
%P 22-32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2017_1_a3/
%G ru
%F VVGUM_2017_1_a3
A. A. Ryzhkova. Harmonic analysis of periodic sequences at infinity. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 1 (2017), pp. 22-32. http://geodesic.mathdoc.fr/item/VVGUM_2017_1_a3/

[1] A.\;G. Baskakov, Harmonic Analysis of Linear Operators, Izd-vo VGU, Voronezh, 1987, 165 pp.

[2] A.\;G. Baskakov, “Harmonic and Spectral Analysis of Operators with Limited Powers and Limited Semigroups of Operators on a Banach Space”, Mathematical Notes, 97:2 (2015), 174–190 | DOI | Zbl

[3] A.\;G. Baskakov, “The Study of Linear Differential Equations by Methods of Spectral Theory of Differential Operators and Linear Relations”, Russian Mathematical Surveys, 68:1 (409) (2013), 77–128 | DOI | Zbl

[4] A.\;G. Baskakov, N.\;S. Kaluzhina, D.\;M. Polyakov, “Slowly Changing at Infinity Semigroups of Operators”, Russian Mathematics, 2014, no. 7, 3–14 | DOI

[5] A.\;G. Baskakov, N.\;S. Kaluzhina, “Beurling’s Theorem for Functions with a Significant Range of Homogeneous Spaces and the Stabilization of Solutions of Parabolic Equations”, Mathematical Notes, 92:5 (2012), 643–661 | DOI | Zbl

[6] A.\;N. Kolmogorov, S.\;V. Fomin, Elements of the Theory of Functions and Functional Analysis, Nauka Publ., M., 1976, 143 pp.

[7] U. Rudin, Function Analysis, Mir Publ., M., 1975, 444 pp.

[8] A.\;A. Ryzhkova, I.\;A. Trishina, “Periodic Functions at Infinity”, Nauch. vedomosti Belgorod. gos. un-ta. Seriya: Matematika. Fizika, 36:19 (2014), 71–75

[9] A.\;A. Ryzhkova, I.\;A. Trishina, “On Almost Periodic at Infinity of Solutions of Difference Equations”, Izv. Sarat. un-ta. Novaya ser. Ser. Matematika. Mekhanika. Informatika, 15:1 (2015), 45–49 | DOI | Zbl