On the structure of the space of linear sistems of differential equations with periodic coeffiсients
Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 1 (2017), pp. 13-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

We examine linear systems of differential equations $$ l: \dot {x}_i = \sum_{j=1}^{n} a_{ij}(t) x_j + b_j(t), i=1,\ldots,n $$ with continuous $\omega$-periodic coefficients. The system $l$ induce the autonomous system $l_p: \dot {x}_i = \sum_{i=1}^{n} a_{ij}(s) x_j + b_j(s), \dot s = 1$ on ${\mathbf{R}}^n \times \mathbf{S}^1$, where $\mathbf{S}^1 = \mathbf{R}/\omega \mathbf{Z}$. The system $l_p$ has the unique extension $\overline{l}_p$ on ${\mathbf{RP}}^n \times \mathbf{S}^1$. By trajectories of system $l$ in ${\mathbf{R}}^n \times \mathbf{S}^1$ (${\mathbf{RP}}^n \times \mathbf{S}^1$) we will mean trajectories of system $l_p$ ($\overline{l}_p$). Let us consider linear systems $l$ as elements of Banach space $L S^n_{\omega}$ of continuous $\omega$-periodic functions $(a_{11}, \ldots, a_{nn}, b_1,\ldots,b_n)\colon \mathbf{R} \to \mathbf{R}^{n^2+n}$ with norm $\|l\|:=\max_{i,j}\max_{t}\max {|a_{ij}(t)|,|b_i(t)|}$. The system $l \in L S^n_{\omega}$ is said to be structurally stable in ${\mathbf{R}}^n \times \mathbf{S}^1$ (in ${\mathbf{RP}}^n \times \mathbf{S}^1$) if $l$ has a neighborhood $V$ in $l \in L S^n_{\omega}$ such that for any system $\widetilde{l} \in V$ we may find a homeomorphism $h \colon {\mathbf{R}}^n \times \mathbf{S}^1 \to {\mathbf{R}}^n \times \mathbf{S}^1$ ( $h \colon {\mathbf{RP}}^n \times \mathbf{S}^1 \to {\mathbf{RP}}^n \times \mathbf{S}^1$, $h (\mathbf{R}^n \times \mathbf{S}^1) = \mathbf{R}^n \times \mathbf{S}^1$) which maps oriented trajectories of system $\widetilde{l}$ onto oriented trajectories of system $l$. Let $\Sigma_0 L S^n_{\omega}$ be the set of systems $l \in L S^n_{\omega}$ whose multiplicators do not belong to the unit circle. Theorem 1. The set $\Sigma_0 L S^n_{\omega}$ is open and everywhere dense in $L S^n_{\omega}$ . A system $l \in L S^n_{\omega}$ is structurally stable in $\mathbf{R}^n \times \mathbf{S}^1$ if and only if it belong to the set $\Sigma_0 L S^n_{\omega}$. Let $\Sigma L S^2_{\omega}$ be the set of systems $l \in L S^2_{\omega}$ whose multiplicators are real, distinct and different from $-1$ and $1$. Let $\Sigma^{+}_s$, $\Sigma^{-}_s$, $\Sigma^{+}_{ns}$, $\Sigma^{-}_{ns}$, $\Sigma^{+}_{nu}$ and $\Sigma^{-}_{nu}$ be subsets of $\Sigma L S^2_{\omega}$ consisting of systems $l$ with multiplicators $\mu_1$, $\mu_2$ for which $\mu_1 1 \mu_2$ ( $\mu_2 -1 \mu_1$) if $l \in \Sigma^{+}_s$ ($l \in \Sigma^{-}_s$) , $0 \mu_1 \mu_2 1$ ( $ -1 \mu_1 \mu_2 0$) if $l \in \Sigma^{+}_{ns}$ ($l \in \Sigma^{-}_{ns}$), $1 \mu_1 \mu_2$ ( $\mu_1 \mu_2 1$) if $l \in \Sigma^{+}_{nu}$ ($l \in \Sigma^{-}_{nu}$). Theorem 2. 1) A system $l \in L S^2_{\omega}$ is structurally stable in $\mathbf{RP}^2 \times \mathbf{S}^1$ if and only if it belong to the set $\Sigma L S^2_{\omega}$. 2) For any system $l \in \Sigma L S^2_{\omega}$ the corresponding system $\overline{l}_p$ in $\mathbf{RP}^2 \times \mathbf{S}^1$ is a Morse–Smale system. 3) The sets $\Sigma^{+}_s$, $\Sigma^{-}_s$, $\Sigma^{+}_{ns}$, $\Sigma^{-}_{ns}$, $\Sigma^{+}_{nu}$ and $\Sigma^{-}_{nu}$ are classes of topological equivalence in $\Sigma L S^2_{\omega}$. The paper also describes bifurcation manifolds of codimension one in the space $L S^2_{\omega}$.
Keywords: linear periodic systems of differential equations, projective plane, structural stability, bifurcation manifolds, multiplicators.
@article{VVGUM_2017_1_a2,
     author = {V. Sh. Roitenberg},
     title = {On the structure of the space of linear sistems of differential equations with periodic coeffi{\cyrs}ients},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {13--21},
     publisher = {mathdoc},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2017_1_a2/}
}
TY  - JOUR
AU  - V. Sh. Roitenberg
TI  - On the structure of the space of linear sistems of differential equations with periodic coeffiсients
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2017
SP  - 13
EP  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2017_1_a2/
LA  - ru
ID  - VVGUM_2017_1_a2
ER  - 
%0 Journal Article
%A V. Sh. Roitenberg
%T On the structure of the space of linear sistems of differential equations with periodic coeffiсients
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2017
%P 13-21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2017_1_a2/
%G ru
%F VVGUM_2017_1_a2
V. Sh. Roitenberg. On the structure of the space of linear sistems of differential equations with periodic coeffiсients. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 1 (2017), pp. 13-21. http://geodesic.mathdoc.fr/item/VVGUM_2017_1_a2/

[1] V.\;I. Arnold, Ordinary Differential Equations, Nauka Publ., M., 1984, 272 pp. | MR

[2] L.\;P. Shilnikov, A.\;L. Shilnikov, D.\;V. Turaev, L. Chua, Methods of Qualitative Theory in Nonlinear Dynamics, v. 1, IKI Publ., M.–Izhevsk, 2004, 416 pp.

[3] V.\;Sh. Roitenberg, “On the Structure of the Space of Linear Vector Fields”, Fundamental and Applied Research in the Contemporary World, 1, no. 9, 2015, 177–182 | Zbl