Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2017_1_a1, author = {V. A. Klyachin and M. I. Kazanin}, title = {Construction of the solutions of the {Monge--Ampere} type equation based on $\Phi$-triangulation}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {6--12}, publisher = {mathdoc}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2017_1_a1/} }
TY - JOUR AU - V. A. Klyachin AU - M. I. Kazanin TI - Construction of the solutions of the Monge--Ampere type equation based on $\Phi$-triangulation JO - Matematičeskaâ fizika i kompʹûternoe modelirovanie PY - 2017 SP - 6 EP - 12 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VVGUM_2017_1_a1/ LA - ru ID - VVGUM_2017_1_a1 ER -
%0 Journal Article %A V. A. Klyachin %A M. I. Kazanin %T Construction of the solutions of the Monge--Ampere type equation based on $\Phi$-triangulation %J Matematičeskaâ fizika i kompʹûternoe modelirovanie %D 2017 %P 6-12 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VVGUM_2017_1_a1/ %G ru %F VVGUM_2017_1_a1
V. A. Klyachin; M. I. Kazanin. Construction of the solutions of the Monge--Ampere type equation based on $\Phi$-triangulation. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 1 (2017), pp. 6-12. http://geodesic.mathdoc.fr/item/VVGUM_2017_1_a1/
[1] A.\;D. Aleksandrov, “The Dirichlet Problem for the Equation $Det||z_{ij}||=\varphi(z_1,...,z_n,z,x_1,...,x_n)$. I”, Vestn. LGU. Ser.: Matematika, mekhanika i astronomiya, 1:1 (1958), 5–24 | Zbl
[2] I.\;M. Gelfand, A.\;V. Zelevinskiy, M.\;M. Kapranov, “Discriminants of Polynomials in Several Variables and Triangulations of Newton Polyhedra”, Leningrad Mathematical Journal, 2:3 (1990), 1–62 | MR | Zbl
[3] I.\;M. Gelfand, A.\;V. Zelevinskiy, M.\;M. Kapranov, “Hypergeometric Functions and Toral Manifolds”, Functional Analysis and Its Applications, 23:2 (1989), 12–26 | MR | Zbl
[4] V.\;A. Klyachin, “Triangulation Algorithm Based on Empty Convex Set Condition”, Science Journal of Volgograd State University. Mathematics. Physics, 2015, no. 3 (28), 27–33
[5] V.\;A. Klyachin, “On the Solvability of the Discrete Analogue of the Minkowski–Alexandrov Problem”, Izv. Sarat. un-ta. Novaya ser. Ser.: Matematika. Mekhanika. Informatika, 16:3 (2016), 281–288 | MR
[6] O.\;N. Shablovskiy, “Parametric Solutions for the Monge–Ampere Equation and Gas Flow with Variable Entropy”, Vestn. Tom. gos. un-ta. Mat. i mekhanika, 2015, no. 1 (33), 105–118