Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2016_6_a7, author = {A. N. Kondrashov}, title = {Isothermic coordinates on sewing surfaces}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {70--80}, publisher = {mathdoc}, number = {6}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2016_6_a7/} }
A. N. Kondrashov. Isothermic coordinates on sewing surfaces. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 6 (2016), pp. 70-80. http://geodesic.mathdoc.fr/item/VVGUM_2016_6_a7/
[1] S.\;K. Vodopyanov, V.\;M. Goldshtein, T.\;G. Latfullin, “Criteria for Extension of Functions of the Class $L^1_2$ From Unbounded Plane Domains”, Siberian Mathematical Journal, XX:2 (1979), 416–419 | Zbl
[2] S.\;K. Vodopyanov, V.\;M. Goldshtein, Y.\;G. Reshetnyak, “On Geometric Properties of Functions with Generalized First Derivatives”, Russian Mathematical Surveys, 34:1 (205) (1979), 17–65 | MR | Zbl
[3] L.\;I. Volkovyskiy, “Investigation of the Type Problem for a Simply Connected Riemann Surface”, Tr. mat. in-ta im. V.A. Steklova AN SSSR, XXXIV, 1950, 3–171
[4] V.\;M. Goldshtein, Y.\;G. Reshetnyak, Quasiconformal Mappings and Sobolev Spaces, Nauka Publ., M., 1983, 284 pp. | MR
[5] I.\;M. Grudskiy, “Construction of Inner Coordinates on Composite Riemann Surfaces”, Differentsialnye, integralnye uravneniya i kompleksnyy analiz, Izd-vo Kalmyts. un-ta, Elista, 1986, 30–45 | MR
[6] I.\;M. Grudskiy, “The Christoffel–Schwarz Formula for Polyhedral Surfaces”, Doklady Mathematics, 307:1 (1989), 15–17 | MR
[7] C. Carathéodory, Conformal Representation, Gosudarstvennoe tekhniko-teoreticheskoe izdatelstvo Publ., M.–L., 1934, 130 pp.
[8] A.\;N. Kondrashov, “On the Theory of Degenerate Alternating Beltrami Equations”, Siberian Mathematical Journal, 53:6 (2012), 1321–1337 | MR | Zbl
[9] A.\;N. Kondrashov, “On the Theory of Alternating Beltrami Equation with Many Folds”, Science Journal of Volgograd State University. Mathematics. Physics, 2013, no. 2 (19), 26–35
[10] A.\;N. Kondrashov, “Beltrami Equations with Degenerate on Arcs”, Science Journal of Volgograd State University. Mathematics. Physics, 2014, no. 5 (24), 24–39
[11] A.\;N. Kondrashov, “Alternating Beltrami Equation and Conformal Multifolds”, Science Journal of Volgograd State University. Mathematics. Physics, 2015, no. 5 (30), 6–24
[12] V.\;M. Miklyukov, “Isothermic Coordinates on Singular Surfaces”, Sbornik: Mathematics, 195:1 (2004), 69–88 | DOI | MR | Zbl
[13] Yu.\;G. Reshetnyak, “Two-Dimensional Manifolds of Bounded Curvature”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 70, 1989, 8–189
[14] L.\;V. Ahlfors, Lectures on quasiconformal mappings, Van Nostrand, Toronto–Ont.–N. Y.–London, 1966, 146 pp. | MR | Zbl
[15] V.\;G. Maz'ya, Sobolev Spaces. With Applications to Elliptic Partial Differential Equations, Springer-Verlag, Berlin–Heidelberg–New York, 2011, 866 pp. | MR | Zbl
[16] S. Müller, V. Sverák, “On surfaces of finite total curvature”, J. Differential Geom., 42:2 (1995), 229–258 | DOI | MR | Zbl
[17] T. Toro, “Surfaces with generalized second fundamental form in $L^2$ are Lipschitz manifolds”, J. Differential Geom., 39:1 (1994), 65–101 | DOI | MR | Zbl