Isothermic coordinates on sewing surfaces
Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 6 (2016), pp. 70-80

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we investigated of question about existence and uniqueness of isothermic coordinates on sewing surfaces in $\mathbb{R}^m$. The such surfaces is special case of irregular surfaces. We obtained the analog of the famous theorem of V.M. Miklukov (2004) for such surfaces. The result of this paper. Theorem 2. Let $\mathcal{X}_{12}$ be a pasting together of the pair of the surfaces $\mathcal{X}_i=(G_i,f_i)$, $(i=1,2)$ and $\Gamma_i=\partial G_i$ is quasistraight line. Let be a $\varphi_{12}:\Gamma_{1}\to\Gamma_{2}$ is sewing function. Assume that $\varphi_{12}$ is quasimonotone function and that $$P_i(x^{(i)})=\frac{E_i(x^{(i)})+G_i(x^{(i)})}{\sqrt{E_i(x^{(i)})G_i(x^{(i)} )-F_i^2(x^{(i)})}}, \ i=1,2,$$ is $W^{1,2}_{\mathrm{loc},\Gamma_i}$-majorized functions in $G_i$. There is exist isothermic coordinates $\xi=(\xi_1,\xi_2) \in B(O,R)$, $R>1$ on $\mathcal{X}_{12}$. These coordinates are determined uniquely by choice of correspondence $a\longleftrightarrow O$, $b\longleftrightarrow \Xi$, where either the $a, b\in G_{i}\cup\Gamma_{i}(i=1,2)$ and $a\ne b$, or $a\in G_1$, $b\in G_2$ and $a\ne\varphi_{12}(b)$.
Keywords: isothermic coordinates, sewing surfaces, sewing functions, quasisymmetric function, $W^{1,2}_{\mathrm{loc},\Gamma}$-majorized functions, quasistraight line.
@article{VVGUM_2016_6_a7,
     author = {A. N. Kondrashov},
     title = {Isothermic coordinates on sewing surfaces},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {70--80},
     publisher = {mathdoc},
     number = {6},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2016_6_a7/}
}
TY  - JOUR
AU  - A. N. Kondrashov
TI  - Isothermic coordinates on sewing surfaces
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2016
SP  - 70
EP  - 80
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2016_6_a7/
LA  - ru
ID  - VVGUM_2016_6_a7
ER  - 
%0 Journal Article
%A A. N. Kondrashov
%T Isothermic coordinates on sewing surfaces
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2016
%P 70-80
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2016_6_a7/
%G ru
%F VVGUM_2016_6_a7
A. N. Kondrashov. Isothermic coordinates on sewing surfaces. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 6 (2016), pp. 70-80. http://geodesic.mathdoc.fr/item/VVGUM_2016_6_a7/