Isothermic coordinates on sewing surfaces
Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 6 (2016), pp. 70-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we investigated of question about existence and uniqueness of isothermic coordinates on sewing surfaces in $\mathbb{R}^m$. The such surfaces is special case of irregular surfaces. We obtained the analog of the famous theorem of V.M. Miklukov (2004) for such surfaces. The result of this paper. Theorem 2. Let $\mathcal{X}_{12}$ be a pasting together of the pair of the surfaces $\mathcal{X}_i=(G_i,f_i)$, $(i=1,2)$ and $\Gamma_i=\partial G_i$ is quasistraight line. Let be a $\varphi_{12}:\Gamma_{1}\to\Gamma_{2}$ is sewing function. Assume that $\varphi_{12}$ is quasimonotone function and that $$P_i(x^{(i)})=\frac{E_i(x^{(i)})+G_i(x^{(i)})}{\sqrt{E_i(x^{(i)})G_i(x^{(i)} )-F_i^2(x^{(i)})}}, \ i=1,2,$$ is $W^{1,2}_{\mathrm{loc},\Gamma_i}$-majorized functions in $G_i$. There is exist isothermic coordinates $\xi=(\xi_1,\xi_2) \in B(O,R)$, $R>1$ on $\mathcal{X}_{12}$. These coordinates are determined uniquely by choice of correspondence $a\longleftrightarrow O$, $b\longleftrightarrow \Xi$, where either the $a, b\in G_{i}\cup\Gamma_{i}(i=1,2)$ and $a\ne b$, or $a\in G_1$, $b\in G_2$ and $a\ne\varphi_{12}(b)$.
Keywords: isothermic coordinates, sewing surfaces, sewing functions, quasisymmetric function, $W^{1,2}_{\mathrm{loc},\Gamma}$-majorized functions, quasistraight line.
@article{VVGUM_2016_6_a7,
     author = {A. N. Kondrashov},
     title = {Isothermic coordinates on sewing surfaces},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {70--80},
     publisher = {mathdoc},
     number = {6},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2016_6_a7/}
}
TY  - JOUR
AU  - A. N. Kondrashov
TI  - Isothermic coordinates on sewing surfaces
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2016
SP  - 70
EP  - 80
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2016_6_a7/
LA  - ru
ID  - VVGUM_2016_6_a7
ER  - 
%0 Journal Article
%A A. N. Kondrashov
%T Isothermic coordinates on sewing surfaces
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2016
%P 70-80
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2016_6_a7/
%G ru
%F VVGUM_2016_6_a7
A. N. Kondrashov. Isothermic coordinates on sewing surfaces. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 6 (2016), pp. 70-80. http://geodesic.mathdoc.fr/item/VVGUM_2016_6_a7/

[1] S.\;K. Vodopyanov, V.\;M. Goldshtein, T.\;G. Latfullin, “Criteria for Extension of Functions of the Class $L^1_2$ From Unbounded Plane Domains”, Siberian Mathematical Journal, XX:2 (1979), 416–419 | Zbl

[2] S.\;K. Vodopyanov, V.\;M. Goldshtein, Y.\;G. Reshetnyak, “On Geometric Properties of Functions with Generalized First Derivatives”, Russian Mathematical Surveys, 34:1 (205) (1979), 17–65 | MR | Zbl

[3] L.\;I. Volkovyskiy, “Investigation of the Type Problem for a Simply Connected Riemann Surface”, Tr. mat. in-ta im. V.A. Steklova AN SSSR, XXXIV, 1950, 3–171

[4] V.\;M. Goldshtein, Y.\;G. Reshetnyak, Quasiconformal Mappings and Sobolev Spaces, Nauka Publ., M., 1983, 284 pp. | MR

[5] I.\;M. Grudskiy, “Construction of Inner Coordinates on Composite Riemann Surfaces”, Differentsialnye, integralnye uravneniya i kompleksnyy analiz, Izd-vo Kalmyts. un-ta, Elista, 1986, 30–45 | MR

[6] I.\;M. Grudskiy, “The Christoffel–Schwarz Formula for Polyhedral Surfaces”, Doklady Mathematics, 307:1 (1989), 15–17 | MR

[7] C. Carathéodory, Conformal Representation, Gosudarstvennoe tekhniko-teoreticheskoe izdatelstvo Publ., M.–L., 1934, 130 pp.

[8] A.\;N. Kondrashov, “On the Theory of Degenerate Alternating Beltrami Equations”, Siberian Mathematical Journal, 53:6 (2012), 1321–1337 | MR | Zbl

[9] A.\;N. Kondrashov, “On the Theory of Alternating Beltrami Equation with Many Folds”, Science Journal of Volgograd State University. Mathematics. Physics, 2013, no. 2 (19), 26–35

[10] A.\;N. Kondrashov, “Beltrami Equations with Degenerate on Arcs”, Science Journal of Volgograd State University. Mathematics. Physics, 2014, no. 5 (24), 24–39

[11] A.\;N. Kondrashov, “Alternating Beltrami Equation and Conformal Multifolds”, Science Journal of Volgograd State University. Mathematics. Physics, 2015, no. 5 (30), 6–24

[12] V.\;M. Miklyukov, “Isothermic Coordinates on Singular Surfaces”, Sbornik: Mathematics, 195:1 (2004), 69–88 | DOI | MR | Zbl

[13] Yu.\;G. Reshetnyak, “Two-Dimensional Manifolds of Bounded Curvature”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 70, 1989, 8–189

[14] L.\;V. Ahlfors, Lectures on quasiconformal mappings, Van Nostrand, Toronto–Ont.–N. Y.–London, 1966, 146 pp. | MR | Zbl

[15] V.\;G. Maz'ya, Sobolev Spaces. With Applications to Elliptic Partial Differential Equations, Springer-Verlag, Berlin–Heidelberg–New York, 2011, 866 pp. | MR | Zbl

[16] S. Müller, V. Sverák, “On surfaces of finite total curvature”, J. Differential Geom., 42:2 (1995), 229–258 | DOI | MR | Zbl

[17] T. Toro, “Surfaces with generalized second fundamental form in $L^2$ are Lipschitz manifolds”, J. Differential Geom., 39:1 (1994), 65–101 | DOI | MR | Zbl