On the linear connectivity of the regular part of Gakhov set
Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 6 (2016), pp. 55-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

The study of extrema of the inner mapping (conformal) radii of the plane domains has been initiated by G. Pólya and G. Szegö in connection with the isoperimetrical inequalities and by F.D. Gakhov in concern with construction of the correction classes for the exterior boundary value problems. Both traditions have been unified in the works of L. A. Aksent'ev and his successors. These works also were seminal for the systematic accumulation of the uniqueness criteria for the critical points of the conformal radii. The process of such an accumulation has led to the introduction of the Gakhov set. Let $H$ be the class of functions holomorphic in the unit disk $\mathbb D = \{\zeta\in {\mathbb C}: |\zeta| 1\}$, and let $H_0$ be the subclass of $H$ consisting of functions $f$ locally univalent in $\mathbb D$ (i.e. $f'(\zeta)\ne 0$ for all $\zeta\in \mathbb D$), normalized by the conditions $f(0) = 0$ and $f'(0) = 1$. We denote by $M_f$ the set of all critical points of the hyperbolic derivative (inner mapping radius) $h_f(\zeta) = (1 - |\zeta|^2) |f'(\zeta)|$ of the function $f\in H_0$. The geometry of the surface $h = h_f$ over the elements $a\in M_f$ is determined by the values of the index $\gamma_f(a)$ of the vector field $\nabla h_f(\zeta)$. It is well-known that if $f\in H_0$ and $a\in M_f$, then $\gamma_f(a)\in \{+1, 0, -1\}$; in particular, the equality $\gamma_f(a) = +1$ means that $\zeta = a$ is the local maximum point for the above mentioned surface. Let $k_f$ be the number of points in $M_f$. The class ${\mathcal G} = \{f\in H_0: k_f\le 1\}$ is said to be the Gakhov set, and the class ${\mathcal G}_1 = \{f\in H_0: k_f = 1, \gamma_f(M_f) = +1\}$ is called the regular part of the Gakhov set. The following question was the stimulus for our study in the present note. F. G. Avkhadiev's question. Whether the class ${\mathcal G}_1$ is a linear connected set or not? Variant of an answer is contained in the following Theorem 1. The regular part ${\mathcal G}_1$ of the Gakhov set $\mathcal G$ is a linear connected subset of the class $H$ endowed with the topology of uniform convergence on compact sets in $\mathbb D$. Proof of the above assertion is the «cascade» of reductions to the following Theorem 2. For any function $f\in {\mathcal G}_1$ there exists a family $f_t\in {\mathcal G}_1$, $t\in [0, 1]$, such that $f_0$ carries out the identity mapping, and $f_1 = f$. The family $\{f_t\}_{0\le t\le 1}$ is constructed on the base of three subfamilies. First subfamily is formed by the linear-invariant actions on $f$ by Möbius automorphisms. This subfamily connects $f$ and the function $w$ with $M_w = \{0\}$. Second subfamily is produced by the level lines of the function $w$ and connects the latter with convex function $v$. Third subfamily is convex combination of $v$ and $f_0$.
Keywords: Gakhov set, Gakhov class, linear connectivity, inner mapping radius, hyperbolic derivative, critical points.
@article{VVGUM_2016_6_a5,
     author = {A. V. Kazantsev},
     title = {On the linear connectivity of the regular part of {Gakhov} set},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {55--60},
     publisher = {mathdoc},
     number = {6},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2016_6_a5/}
}
TY  - JOUR
AU  - A. V. Kazantsev
TI  - On the linear connectivity of the regular part of Gakhov set
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2016
SP  - 55
EP  - 60
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2016_6_a5/
LA  - ru
ID  - VVGUM_2016_6_a5
ER  - 
%0 Journal Article
%A A. V. Kazantsev
%T On the linear connectivity of the regular part of Gakhov set
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2016
%P 55-60
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2016_6_a5/
%G ru
%F VVGUM_2016_6_a5
A. V. Kazantsev. On the linear connectivity of the regular part of Gakhov set. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 6 (2016), pp. 55-60. http://geodesic.mathdoc.fr/item/VVGUM_2016_6_a5/

[1] L.\;A. Aksent’ev, A.\;V. Kazantsev, A.\;V. Kiselev, “Uniqueness of the Solution of an Exterior Inverse Boundary Value Problem”, Soviet Mathematics, 1984, no. 10, 8–18 | Zbl

[2] L.\;A. Aksent’ev, Yu.\;E. Hohlov, E.\;A. Shirokova, “Uniqueness of Solution of the Exterior Inverse Boundary-Value Problem”, Mathematical Notes, 24 (1978), 319–333 | MR

[3] L.\;A. Aksent’ev, M.\;I. Kinder, S.\;B. Sagitova, “Solvability of the Exterior Inverse Boundary Value Problem in the Case of a Multiply Connected Domain”, Trudy seminara po kraevym zadacham, 20, KGU Publ., Kazan, 1983, 22–34

[4] L.\;A. Aksent’ev, “The Connection of the Exterior Inverse Boundary Value Problem with the Inner Radius of the Domain”, Soviet Mathematics, 1984, no. 2, 3–11 | Zbl

[5] F.\;D. Gakhov, “On Inverse Boundary-Value Problems”, Doklady Mathematics, 86:4 (1952), 649–652 | MR | Zbl

[6] T.\;V. Zharkova, A.\;V. Kazantsev, “Gakhov Set in the Merkes Theorem on Convex Combinations”, Uchen. zap. Kazan. un-ta. Ser.: Fiz.-mat. nauki, 156:2 (2014), 34–42 | MR | Zbl

[7] A.\;V. Kazantsev, “Bifurcations and New Uniqueness Criteria for the Critical Points of Hyperbolic Derivatives”, Uchen. zap. Kazan. un-ta. Ser.: Fiz.-mat. nauki, 153:1 (2011), 180–194 | MR | Zbl

[8] A.\;V. Kazantsev, “Convexity of Some Hartogs Domain Is Epsteinian”, Geometricheskiy analiz i ego prilozheniya, Materialy III Mezhdunar. shk.-konf., Izd-vo VolGU, Volgograd, 2016, 91–93

[9] A.\;V. Kazantsev, Four Etudes on a Theme of F.\;D. Gakhov, Izd-vo MarGU, Yoshkar-Ola, 2012, 64 pp.

[10] G. Pólya, G. Szegö, Aufgaben und Lehrsátze aus der Analysis, v. 2, Nauka Publ., M., 1978, 432 pp. | MR

[11] B.\;V. Shabat, Introduction to Complex Analysis, Nauka Publ., M., 1969, 576 pp. | MR

[12] H.\;R. Haegi, “Extremalprobleme und Ungleichungen konformer Gebietsgrößen”, Compositio Math., 8:2 (1950), 81–111 | MR | Zbl

[13] G. Schober, Univalent functions—selected topics, Springer-Verlag, Berlin–Heidelberg–N. Y., 1975, 200 pp. | MR | Zbl