Metrization in space families of points in $\mathbb{R}^n$ and adjoining questions
Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 6 (2016), pp. 40-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the work we introduced the concept of a family of points in $\mathbb{R}^n$ and metrization of space of points families. Under the family understood the points numbered set of points in $\mathbb{R}^n$. In the interpretation of points in space as the nodes of a grid (lattice) introduced in this paper, the concept of distance can be used as a kind of measure of the differences between the test grid of reference or in some critical sense. Moreover, this measure of the difference can be determined through measure differences corresponding to the grid elements—for example, in the case of tetrahedral mesh—for its individual tetrahedrons adjacent, for couples tetrahedra. A family of $k$ points ($k$-point family) is a function $F:\{1,\ldots,k\} \to \mathbb{R}^n$. We define the distance $\rho(F,G)$ between the families $F$ and $G$ as the logarithm of some expression that contains the Euclidean distance $|F(i)F(j)|$, $|G(i)G(j)|$. Distance $\rho$ is invariant relatively orthogonal mapping: $\rho(O\circ F,G)=\rho(F,G)$ for any orthogonal mapping $O:\mathbb{R}^n\to \mathbb{R}^n$. We give an estimate of the distance that moves the family $F$ under the action of quasi-isometric mapping $f$: $\displaystyle\rho(F,f \circ F) \leq \log \frac{L}{l}$, where $l$ is minimum distortion mapping $f$, $L$ is maximum distortion mapping $f$. Next, we prove the following sufficient sign of preservation any properties of families of points at quasi-isometric mapping: Тheorem 2. Let $F$ is $k$-point family in $\mathbb{R}^n$, $f:F(I)\to \mathbb{R}^n$ is quasi-isometric mapping; ${\mathcal Z}$—a set of $k$-point families. If $F\not\in{\mathcal Z}$ and $$ log \frac{L}{l}\rho(F,{\mathcal Z}), $$ then $$ f\circ F \not\in{\mathcal Z}. $$ (${\mathcal Z}$ is set of families considered the property of not having). Also we provide a general scheme of finding the value $\rho(F,{\mathcal Z})$. For example, we explore the three-point families. We calculated distance from the arbitrary triangle to set of degenerate triangles. Also we prove that the most remote from set of degenerate triangles is an equilateral triangle, and calculated the corresponding distance. It is equal to $\log 2$.
Keywords: Delaunay's condition of empty ball, quasiisometrique mapping, triangle nondegeneracy, meshes.
@article{VVGUM_2016_6_a4,
     author = {A. Yu. Igumnov},
     title = {Metrization in space families of points in $\mathbb{R}^n$ and adjoining questions},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {40--54},
     publisher = {mathdoc},
     number = {6},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2016_6_a4/}
}
TY  - JOUR
AU  - A. Yu. Igumnov
TI  - Metrization in space families of points in $\mathbb{R}^n$ and adjoining questions
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2016
SP  - 40
EP  - 54
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2016_6_a4/
LA  - ru
ID  - VVGUM_2016_6_a4
ER  - 
%0 Journal Article
%A A. Yu. Igumnov
%T Metrization in space families of points in $\mathbb{R}^n$ and adjoining questions
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2016
%P 40-54
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2016_6_a4/
%G ru
%F VVGUM_2016_6_a4
A. Yu. Igumnov. Metrization in space families of points in $\mathbb{R}^n$ and adjoining questions. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 6 (2016), pp. 40-54. http://geodesic.mathdoc.fr/item/VVGUM_2016_6_a4/

[1] L. Alfors, Lectures on Quasiconformal Mappings, Mir Publ., M., 1969, 154 pp. | MR

[2] A.\;Yu. Igumnov, “About Tetrahedra Systems Satisfying Empty Bowl”, Zapiski seminara «Sverkhmedlennye protsessy», 3, VolSU Publ., Volgograd, 2008, 106–116

[3] A.\;Yu. Igumnov, “Feature Degree Triangle Nondegeneracy”, Zapiski seminara «Sverkhmedlennye protsessy», 2, VolSU Publ., Volgograd, 2007, 198–206

[4] A.\;Yu. Igumnov, “Feature Degree Triangle Nondegeneracy”, Zapiski seminara «Sverkhmedlennye protsessy», 4, VolSU Publ., Volgograd, 2009, 207–219

[5] S.\;N. Karabtsev, S.\;V. Stukolov, “Voronoi Diagrams and Definition of the Field in the Method of Natural Boundaries Neighbors”, Computational technologies, 13:3 (2010), 65–80

[6] V.\;A. Klyachin, “On Homomorphisms Preserving Triangulation”, Zapiski seminara «Sverkhmedlennye protsessy», 4, VolSU Publ., Volgograd, 2009, 169–182

[7] V.\;A. Klyachin, “A Generalization of the Delaunay Condition”, Zapiski seminara «Sverkhmedlennye protsessy», 2, VolSU Publ., Volgograd, 2007, 102–107

[8] V.\;A. Klyachin, A.\;A. Shirokiy, “Delaunay Triangulation of Multidimensional Surfaces and Its Approximation Properties”, Russian Mathematics, 2012, no. 1, 31–39 | Zbl

[9] A.\;S. Lebedev, “Construction of Unstructured Triangular Grids with Almost Correct Cells”, Computational technologies, 15:1 (2010), 85–97 | Zbl

[10] V.\;M. Miklyukov, Introduction to Non-Smooth Analysis, VolSU Publ., Volgograd, 2008, 424 pp.

[11] V.\;M. Miklyukov, “Some of the Problems Arising in the Problem of Triangulation Boundary Layer”, Zapiski seminara «Sverkhmedlennye protsessy», 1, VolSU Publ., Volgograd, 2006, 154–162

[12] L.\;V. Kruglyakova, A.\;V. Neledova, V.\;F. Tishkin, A.\;Yu. Filatov, “Unstructured Adaptive Grids for Mathematical Physics Problems (Review)”, Mathematical Models and Computer Simulations, 10:3 (1998), 93–116 | MR | Zbl

[13] B. Delaunay, “Sur la sphère vide. A la mémoire de Georges Voronoï”, Izvestiya: Mathematics, 1934, no. 6, 793–800