Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2016_6_a3, author = {A. S. Ignat{\cyre}nko and B. E. Levitsii}, title = {Method of the optimal control in the solution of a variational problem}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {28--39}, publisher = {mathdoc}, number = {6}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2016_6_a3/} }
TY - JOUR AU - A. S. Ignatеnko AU - B. E. Levitsii TI - Method of the optimal control in the solution of a variational problem JO - Matematičeskaâ fizika i kompʹûternoe modelirovanie PY - 2016 SP - 28 EP - 39 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VVGUM_2016_6_a3/ LA - ru ID - VVGUM_2016_6_a3 ER -
A. S. Ignatеnko; B. E. Levitsii. Method of the optimal control in the solution of a variational problem. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 6 (2016), pp. 28-39. http://geodesic.mathdoc.fr/item/VVGUM_2016_6_a3/
[1] A.\;S. Ignatenko, B.\;E. Levitskiy, “Method of Optimal Control in the Solution of the Variational Problem for the Modules of Families of the Surfaces That Bend Around Obstacles in a Spherical Ring”, Tr. mat. tsentra im. N.\;I. Lobachevskogo, 13, 2002, 64–70
[2] L.\;S. Pontryagin, V.\;G. Boltyanskiy, The Mathematical Theory of Optimal Processes, Nauka Publ., M., 1983, 393 pp.