Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2016_6_a2, author = {D. Kh. Giniyatova}, title = {An exact order of the majorant growth in the {Schwarz--Pick} inequality for torsional rigidity}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {18--27}, publisher = {mathdoc}, number = {6}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2016_6_a2/} }
TY - JOUR AU - D. Kh. Giniyatova TI - An exact order of the majorant growth in the Schwarz--Pick inequality for torsional rigidity JO - Matematičeskaâ fizika i kompʹûternoe modelirovanie PY - 2016 SP - 18 EP - 27 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VVGUM_2016_6_a2/ LA - ru ID - VVGUM_2016_6_a2 ER -
D. Kh. Giniyatova. An exact order of the majorant growth in the Schwarz--Pick inequality for torsional rigidity. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 6 (2016), pp. 18-27. http://geodesic.mathdoc.fr/item/VVGUM_2016_6_a2/
[1] F.\;G. Avkhadiev, “Solution of the Generalized Saint-Venant Problem”, Sbornik: Mathematics, 189:12 (1998), 3–12 | DOI | MR | Zbl
[2] D.\;Kh. Giniyatova, “The Analog of Szasz’s Theorem for the Second Derivatives of Analytic Functions”, Tr. mat. tsentra im. N.I. Lobachevskogo, 38, 2009, 84–85 | MR
[3] D.\;Kh. Giniyatova, “Generalization of Theorems of Szasz and Ruscheweyh on Exact Bounds for Derivatives of Analytic Functions”, Russian Mathematics, 2009, no. 12, 84–89 | MR | Zbl
[4] D.\;Kh. Giniyatova, “Estimates of the Hyperbolic Radius Gradient and Schwarz–Pick Inequalities for the Eccentric Annulus”, Uchen. zap. Kazan. un-ta. Seriya fiz.-mat., 158 (2016), 172–179 | MR
[5] R.\;G. Salakhudinov, “Izoperimetricheskie neravenstva dlya $L^P$-norm funktsii napryazheniya mnogosvyaznoi oblasti na ploskosti”, Izv. vuzov. Matematika, 2013, no. 9, 75–80 | MR | Zbl
[6] D.\;A. Abramov, F.\;G. Avkhadiev, D.\;Kh. Giniyatova, “Versions of the Schwarz lemma for domain moments and the torsional rigidity”, Lobachevskii J. Math., 32:2 (2011), 149–158 | DOI | MR | Zbl
[7] F.\;G. Avkhadiev, K.-J. Wirths, “Estimates of the derivatives of meromorphic maps from convex domains into concave domains”, CMFT, 8 (2008), 107–119 | MR | Zbl
[8] F.\;G. Avkhadiev, K.-J. Wirths, “Schwarz–Pick inequalities for hyperbolic domains in the extended plane”, Geom. Dedicata, 106 (2004), 1–10 | DOI | MR | Zbl
[9] F.\;G. Avkhadiev, K.-J. Wirths, Schwarz–Pick type inequalities, Birkhäuser, Boston–Berlin–Bern, 2009, 156 pp. | MR | Zbl
[10] F.\;G. Avkhadiev, K.-J. Wirths, “The punishing factors for convex pairs are $2^{n-1}$”, Revista Math. Iberoamericana, 23 (2007), 847–860 | DOI | MR | Zbl
[11] C. Bandle, Isoperimetric inequalities and application, Pitman, Boston, 1980, 228 pp. | MR
[12] S.\;N. Bernstein, “Sur la limitation des derivees des polynomes”, C. R. Acad. Sci. Paris, 190 (1930), 338–340
[13] S. Carathéodory, “Sur quelques applications du théorème de Landau–Picard”, C. R. Acad. Sci. Paris, 144 (1907), 1203–1206 | MR | Zbl
[14] G. Pick, “Über die Beschränkungen analytischer Funktionen, welche durch vorgeschriebene Funktionswerte bewirkt werden”, Mat. Ann., 77 (1916), 7–23 | DOI | MR
[15] G. Polya, G. Szego, Isoperimetric Inequalities in Mathematical Physics, Princeton Univ. Press, Princeton, 1951, 279 pp. | MR | Zbl
[16] St. Ruscheweyh, “Two remarks on bounded analytic functions”, Bulg. Math. Publ., 11 (1985), 200–202 | MR | Zbl
[17] St. Ruscheweyh, “Über einige Klassen in Einheitskreis holomorpher Funktionen”, Ber. Math.-Stat. Sektion Forschungszentrum Graz., 1974, no. 7, 1–12
[18] R.\;G. Salakhudinov, “Payne type inequalities for $L^p$-norms of the warping functions”, J. of Math. Anal. and Appl., 410:2 (2014), 659–669 | DOI | MR | Zbl
[19] O. Szász, “Ungleichheitsbeziehungen für die Ableitungen einer Potenzreihe, die eine im Einheitskreise beschränkte Funktion darstellt”, Math. Z., 8 (1920), 303–309 | DOI | MR | Zbl
[20] S. Yamashita, “La dérivée d'une function univalente dans un domaine hyperbolique”, C. R. Acad. Sci. Paris, 314 (1992), 45–48 | MR | Zbl