An exact order of the majorant growth in the Schwarz--Pick inequality for torsional rigidity
Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 6 (2016), pp. 18-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

The beginning of Schwarz–Pick type inequalities may be found in classical papers of Pick [14], Caratheodory [13], Szasz [19], Bernstein [12] and others. In recent years this program is actively developed, a number of results on inequalities of this type can be found in articles of Ruscheweyh [16;17], Yamashita [20], Avkhadiev [7–10] etc. (see also [2–4]). These results are concerned with function $f$ holomorphic or meromorphic in a domain $\Omega$ in the extended complex plane $\overline{\mathbb{C}}$ and $f(\Omega)\subset\Pi\subset\mathbb{\overline{C}}$. In [6] we obtained Schwarz–Pick type inequalities for the torsional rigidity. As known, the Saint-Venant functional P for the torsional rigidity in an arbitrary plane $\Omega$ can be found as the solution of the generalized problem (see [1;11;15]) $$ P(\Omega)=\sup\limits_{u\in C_0^{\infty}(\Omega)}\frac{\left(2\int_{\Omega} u(x)dx \right)^2}{\int_{\Omega} |\nabla u|^2 dxdy}, $$ where $(x,y)\in\Omega,\; C_0^{\infty}(\Omega)$—the space of smooth functions with compact support in $\Omega$. Let $\Omega\in\mathbb{C}$ arbitrary simply connected domain and $0\in\mathbb{C}$. According to Riemann's theorem there exists a function $f$ such that $f:\Delta\rightarrow\Omega$ and $f(0)=0$. Let $\Omega_r$ the image of the circle $\Delta_r=\{\zeta\in\mathbb{C}:|\zeta|$ under the mapping $f$ for each $r\in(0,1)$, i.e. $\Omega_r=\{z\in\Omega: z=f(\zeta), |\zeta|$. In [6] formulated an analogue of Schwarz–Pick theorem for the $P(\Omega)$, namely proved Theorem. Let $P(\Omega)\infty$ and $0$. Then the following inequalities hold $$ \frac{dP(\Omega_r)}{dr}\frac{4r^3}{1-r^8}P(\Omega), $$ and, for each $m\in\mathbb{N}$, $$ \left(\frac{P(\Omega_r)}{r^4}\right)^{(2m+1)}\frac{(2m+1)!P(\Omega)}{(1-r^2)^{2m+1}}\sum\limits_{k=0}^m{m\choose k}^2r^{2k}. $$ We see, that both inequalities are strict in this theorem. In this paper we establish the asymptotic accuracy of the estimates. We prove the next theorems: Theorem 1. For each $r_0\in[1/2,1)$ there exists $\Omega=\Omega(r_0)$, $z=0\in\Omega$, such that $$ \left.\frac{dP(\Omega_r(r_0))}{dr}\right|_{r=r_0}\geq\frac{c_0}{1-r_0^2}, $$ where $c_0=\frac{\pi}{2^73^5}$. Theorem 2. For each $r_0\in[1/2,1)$ there exists $\Omega=\Omega(r_0)$, $z=0\in\Omega$, such that $$ \left.\left(\frac{P(\Omega_r(r_0))}{r^4}\right)^{(n)}\right|_{r=r_0}\geq\frac{c}{(1-r_0^2)^n}, $$ where $c=\frac{\pi}{2^{3n+2}3^{n+5}}$, n>1.
Keywords: Schwarz–Pick type inequalities, torsional rigidity, Schwarz's lemma, conformal mappings.
@article{VVGUM_2016_6_a2,
     author = {D. Kh. Giniyatova},
     title = {An exact order of the majorant growth in the {Schwarz--Pick} inequality for torsional rigidity},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {18--27},
     publisher = {mathdoc},
     number = {6},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2016_6_a2/}
}
TY  - JOUR
AU  - D. Kh. Giniyatova
TI  - An exact order of the majorant growth in the Schwarz--Pick inequality for torsional rigidity
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2016
SP  - 18
EP  - 27
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2016_6_a2/
LA  - ru
ID  - VVGUM_2016_6_a2
ER  - 
%0 Journal Article
%A D. Kh. Giniyatova
%T An exact order of the majorant growth in the Schwarz--Pick inequality for torsional rigidity
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2016
%P 18-27
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2016_6_a2/
%G ru
%F VVGUM_2016_6_a2
D. Kh. Giniyatova. An exact order of the majorant growth in the Schwarz--Pick inequality for torsional rigidity. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 6 (2016), pp. 18-27. http://geodesic.mathdoc.fr/item/VVGUM_2016_6_a2/

[1] F.\;G. Avkhadiev, “Solution of the Generalized Saint-Venant Problem”, Sbornik: Mathematics, 189:12 (1998), 3–12 | DOI | MR | Zbl

[2] D.\;Kh. Giniyatova, “The Analog of Szasz’s Theorem for the Second Derivatives of Analytic Functions”, Tr. mat. tsentra im. N.I. Lobachevskogo, 38, 2009, 84–85 | MR

[3] D.\;Kh. Giniyatova, “Generalization of Theorems of Szasz and Ruscheweyh on Exact Bounds for Derivatives of Analytic Functions”, Russian Mathematics, 2009, no. 12, 84–89 | MR | Zbl

[4] D.\;Kh. Giniyatova, “Estimates of the Hyperbolic Radius Gradient and Schwarz–Pick Inequalities for the Eccentric Annulus”, Uchen. zap. Kazan. un-ta. Seriya fiz.-mat., 158 (2016), 172–179 | MR

[5] R.\;G. Salakhudinov, “Izoperimetricheskie neravenstva dlya $L^P$-norm funktsii napryazheniya mnogosvyaznoi oblasti na ploskosti”, Izv. vuzov. Matematika, 2013, no. 9, 75–80 | MR | Zbl

[6] D.\;A. Abramov, F.\;G. Avkhadiev, D.\;Kh. Giniyatova, “Versions of the Schwarz lemma for domain moments and the torsional rigidity”, Lobachevskii J. Math., 32:2 (2011), 149–158 | DOI | MR | Zbl

[7] F.\;G. Avkhadiev, K.-J. Wirths, “Estimates of the derivatives of meromorphic maps from convex domains into concave domains”, CMFT, 8 (2008), 107–119 | MR | Zbl

[8] F.\;G. Avkhadiev, K.-J. Wirths, “Schwarz–Pick inequalities for hyperbolic domains in the extended plane”, Geom. Dedicata, 106 (2004), 1–10 | DOI | MR | Zbl

[9] F.\;G. Avkhadiev, K.-J. Wirths, Schwarz–Pick type inequalities, Birkhäuser, Boston–Berlin–Bern, 2009, 156 pp. | MR | Zbl

[10] F.\;G. Avkhadiev, K.-J. Wirths, “The punishing factors for convex pairs are $2^{n-1}$”, Revista Math. Iberoamericana, 23 (2007), 847–860 | DOI | MR | Zbl

[11] C. Bandle, Isoperimetric inequalities and application, Pitman, Boston, 1980, 228 pp. | MR

[12] S.\;N. Bernstein, “Sur la limitation des derivees des polynomes”, C. R. Acad. Sci. Paris, 190 (1930), 338–340

[13] S. Carathéodory, “Sur quelques applications du théorème de Landau–Picard”, C. R. Acad. Sci. Paris, 144 (1907), 1203–1206 | MR | Zbl

[14] G. Pick, “Über die Beschränkungen analytischer Funktionen, welche durch vorgeschriebene Funktionswerte bewirkt werden”, Mat. Ann., 77 (1916), 7–23 | DOI | MR

[15] G. Polya, G. Szego, Isoperimetric Inequalities in Mathematical Physics, Princeton Univ. Press, Princeton, 1951, 279 pp. | MR | Zbl

[16] St. Ruscheweyh, “Two remarks on bounded analytic functions”, Bulg. Math. Publ., 11 (1985), 200–202 | MR | Zbl

[17] St. Ruscheweyh, “Über einige Klassen in Einheitskreis holomorpher Funktionen”, Ber. Math.-Stat. Sektion Forschungszentrum Graz., 1974, no. 7, 1–12

[18] R.\;G. Salakhudinov, “Payne type inequalities for $L^p$-norms of the warping functions”, J. of Math. Anal. and Appl., 410:2 (2014), 659–669 | DOI | MR | Zbl

[19] O. Szász, “Ungleichheitsbeziehungen für die Ableitungen einer Potenzreihe, die eine im Einheitskreise beschränkte Funktion darstellt”, Math. Z., 8 (1920), 303–309 | DOI | MR | Zbl

[20] S. Yamashita, “La dérivée d'une function univalente dans un domaine hyperbolique”, C. R. Acad. Sci. Paris, 314 (1992), 45–48 | MR | Zbl