Numerical modelling of chemical and dynamic evolution of colliding HI clouds
Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 6 (2016), pp. 174-180.

Voir la notice de l'article provenant de la source Math-Net.Ru

Interstellar clouds collisions have a strong influence on star formation, dissipation of kinetic energy and gaseous structure of galaxies. In addition, clouds collisions are one of the most important physical processes that are responsible for transitions between different phases of the interstellar medium and observed mass spectrum of diffuse HI clouds. The main aim of the article is high resolution numerical simulations of diffusion clouds collisions in two dimensions in the frame of the self-consistent model. This approach implies concurrent consideration of dynamical, thermal and chemical processes in the interstellar medium with particular attention to formation of $H_2$ and $CO$ during clouds inelastic collisions. The approach of Nelson and Langer (1997) for modeling of chemistry of the interstellar medium was chosen. The thermal model of the interstellar medium includes the most relevant cooling and heating processes for temperature interval between $10$ and $2 \cdot 10^4$ К. We assume that clouds are characterized by temperature $T_{cl} = 80$ К and number density $n_{cl} = 10 \,{\mathrm{sm}}^{-3}$, radius of the clouds are $1$ pc before collision. Initially clouds are in pressure equilibrium with the warm surrounding intercloud medium with temperature $T_{wim} = 8 000$ К, $n_{wim} = 0,1 \, {\mathrm{sm}}^{-3}$. The chemical composition of the clouds and intercloud medium is basically the same, except for $H_2$. The abundance of $H_2$ in clouds are $x(H_2) = 0,1$, all gas in intercloud medium is in the form of HI. We have found that in radiative regime of head-on collisions of equal mass clouds the destruction of clouds takes place with formations of cold clouds filaments. The fractional abundance of $H_2$ in filaments does not exceeds $0,1$, $CO$ fraction is very small. In adiabatic regime of interaction clouds are destroyed completely, so all the clouds material is converted in warm phase of the ISM.
Keywords: interstellar medium, chemical kinetics, gas dynamics, numerical methods, HI clouds.
@article{VVGUM_2016_6_a16,
     author = {P. V. Ivakhnenko and M. A. Eremin and V. V. Korolev},
     title = {Numerical modelling of chemical and dynamic evolution of colliding {HI} clouds},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {174--180},
     publisher = {mathdoc},
     number = {6},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2016_6_a16/}
}
TY  - JOUR
AU  - P. V. Ivakhnenko
AU  - M. A. Eremin
AU  - V. V. Korolev
TI  - Numerical modelling of chemical and dynamic evolution of colliding HI clouds
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2016
SP  - 174
EP  - 180
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2016_6_a16/
LA  - ru
ID  - VVGUM_2016_6_a16
ER  - 
%0 Journal Article
%A P. V. Ivakhnenko
%A M. A. Eremin
%A V. V. Korolev
%T Numerical modelling of chemical and dynamic evolution of colliding HI clouds
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2016
%P 174-180
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2016_6_a16/
%G ru
%F VVGUM_2016_6_a16
P. V. Ivakhnenko; M. A. Eremin; V. V. Korolev. Numerical modelling of chemical and dynamic evolution of colliding HI clouds. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 6 (2016), pp. 174-180. http://geodesic.mathdoc.fr/item/VVGUM_2016_6_a16/

[1] N.\;G. Bochkarev, Fundamentals of Physics of the Interstellar Medium, Librokom Publ., M., 2010, 352 pp.

[2] M.\;A. Eremin, E.\;O. Vasilyev, V.\;N. Lyubimov, “Astrochemhydro: a Parallel Code for Numerical Simulations of Chemo-Dynamical Evolution of Interstellar Medium”, Vestnik UGATU, 16:3 (48) (2012), 99–107

[3] D. Galli, F. Palla, “The chemistry of the early Universe”, Astronomy and Astrophysics, 335 (1998), 403–420

[4] S.\;C.\;O. Glover, P.\;C. Clark, “Approximations for modelling CO chemistry in giant molecular clouds: a comparison of approaches”, Monthly Notices of the Royal Astronomical Society, 421 (2012), 116–131

[5] S.\;C.\;O. Glover, M.\;M. Mac Low, “Simulating the formation of molecular clouds. I. Slow formation by gravitational collapse from static initial conditions”, The Astrophysical Journal Supplement Series, 169 (2007), 239–268 | DOI

[6] M.\;A. Hausman, “Collisional mergers and fragmentation of interstellar clouds”, The Astrophysical Journal, 245 (1981), 72–91 | DOI

[7] F. Miniati, T.\;W. Jones, A. Ferrara, D. Ryu, “Hydrodynamics of cloud collisions in two dimensions: the fate of clouds in a multiphase medium”, The Astrophysical Journal, 491 (1997), 216–232 | DOI

[8] F. Miniati, D. Ryu, A. Ferrara, T.\;W. Jones, “Magnetohydrodynamics of cloud collisions in a multiphase interstellar medium”, The Astrophysical Journal, 510 (1999), 726–746 | DOI

[9] S.\;C.\;O. Glover, C. Federrath, M.\;M. Mac Low, R.\;S. Klessen, “Modelling CO formation in the turbulent interstellar medium”, Monthly Notices of the Royal Astronomical Society, 404 (2010), 2–29

[10] R.\;P. Nelson, W. Langer, “On the stability and evolution of isolated BOK globules”, Astrophysical Journal, 524 (1999), 923–946 | DOI

[11] R.\;P. Nelson, W. Langer, “The dynamics of low-mass molecular clouds in external radiation fields”, Astrophysical Journal, 482 (1997), 796–826 | DOI

[12] M.\;E. Stone, “Collisions between HI clouds. I. One-dimensional model”, The Astrophysical Journal, 159 (1970), 277–292 | DOI

[13] M.\;E. Stone, “Collisions between HI clouds. II. Two-dimensional model”, The Astrophysical Journal, 159 (1970), 293–307 | DOI

[14] The UMIST Database for Astrochemistry 2012, http://udfa.ajmarkwick.net/