Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2016_6_a15, author = {S. S. Khrapov and N. M. Kuz'min and M. A. Butenko}, title = {The comparison of accuracy and convergence for the {CSPH---TVD} method and some {Eulerian} schemes for solving gas-dynamic equations}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {166--173}, publisher = {mathdoc}, number = {6}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2016_6_a15/} }
TY - JOUR AU - S. S. Khrapov AU - N. M. Kuz'min AU - M. A. Butenko TI - The comparison of accuracy and convergence for the CSPH---TVD method and some Eulerian schemes for solving gas-dynamic equations JO - Matematičeskaâ fizika i kompʹûternoe modelirovanie PY - 2016 SP - 166 EP - 173 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VVGUM_2016_6_a15/ LA - ru ID - VVGUM_2016_6_a15 ER -
%0 Journal Article %A S. S. Khrapov %A N. M. Kuz'min %A M. A. Butenko %T The comparison of accuracy and convergence for the CSPH---TVD method and some Eulerian schemes for solving gas-dynamic equations %J Matematičeskaâ fizika i kompʹûternoe modelirovanie %D 2016 %P 166-173 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/VVGUM_2016_6_a15/ %G ru %F VVGUM_2016_6_a15
S. S. Khrapov; N. M. Kuz'min; M. A. Butenko. The comparison of accuracy and convergence for the CSPH---TVD method and some Eulerian schemes for solving gas-dynamic equations. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 6 (2016), pp. 166-173. http://geodesic.mathdoc.fr/item/VVGUM_2016_6_a15/
[1] A.\;G. Zhumaliev, S.\;S. Khrapov, “Numerical Scheme CSPH—TVD: Front of Shock Wave Simulation”, Science Journal of Volgograd State University. Mathematics. Physics, 2012, no. 2 (17), 60–67
[2] A.\;V. Khoperskov, S.\;S. Khrapov, A.\;V. Pisarev, A.\;A. Voronin, M.\;V. Eliseeva, I.\;A. Kobelev, “The Problem of Management Hydrological Regime in Ecology-Economic System «Volga HPS—Volga–Akhtuba Flood-Plain». Part 1. Simulation of Surface Water Dynamics in Springtime Flood”, Control Sciences, 2012, no. 5, 18–25
[3] A.\;A. Belosludtsev, D.\;V. Gusarov, M.\;A. Eremin, N.\;M. Kuzmin, S.\;A. Khoperskov, S.\;S. Khrapov, “Informational-Computer System for Modeling the Dynamics of Contaminants From the Chemical Industry”, Science Journal of Volgograd State University. Mathematics. Physics, 2009, no. 13, 95–102
[4] N.\;M. Kuzmin, V.\;V. Mustsevoy, S.\;S. Khrapov, “Numerical Simulation of Evolution of Unstable Modes of Jets From Young Star Objects”, Astronomy Reports, 84:12 (2007), 1089–1098
[5] N.\;M. Kuzmin, M.\;A. Butenko, “Numerical Code for Simulation of Aspiration Flows in Industry Workshop”, Science Journal of Volgograd State University. Mathematics. Physics, 2015, no. 5 (30), 51–59
[6] A.\;V. Pisarev, S.\;S. Khrapov, A.\;V. Khoperskov, “Numerical Scheme on the Base of Combined SPH—TVD Approach: the Problem of Shear Flows Simulation”, Science Journal of Volgograd State University. Mathematics. Physics, 2011, no. 2 (15), 138–141 | MR
[7] A.\;A. Voronin, A.\;A. Vasilchenko, M.\;V. Pisareva, A.\;V. Pisarev, A.\;V. Khoperskov, S.\;S. Khrapov, Yu.\;V. Podshchipkova, “Systems Design of Ecological and Economic Management of the Volga–Akhtuba Floodplain Based on Hydrodynamic and Geoinformatics Simulation”, Upravlenie bolshimi sistemami, 55, 2015, 79–102
[8] S.\;S. Khrapov, A.\;V. Khoperskov, M.\;A. Eremin, Simulation of Surface Water Dynamics, Izd-vo VolGU, Volgograd, 2010, 132 pp.
[9] A.\;V. Pisarev, S.\;S. Khrapov, E.\;O. Agafonnikova, A.\;V. Khoperskov, “Numerical Model of Surface Water Dynamics in Volgas Bed: Estimation of Roughness Coefficient”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2013, no. 1, 114–130
[10] S.\;S. Khrapov, A.\;V. Khoperskov, N.\;M. Kuzmin, A.\;V. Pisarev, I.\;A. Kobelev, “Numerical Scheme for Simulation of Dynamics Surface Waters on the Base of Combined SPH—TVD Approach”, Numerical Methods and Programming, 12:1 (2011), 282–297
[11] N.\;M. Kuzmin, A.\;V. Belousov, T.\;S. Shushkevich, S.\;S. Khrapov, “Numerical Scheme CSPH—TVD: Investigation of Influence Slope Limiters”, Science Journal of Volgograd State University. Mathematics. Physics, 2014, no. 1 (20), 22–34
[12] K.\;S. Shushkevich, N.\;M. Kuzmin, “One-Dimensional Numerical Scheme for Gas-Dynamics Simulation on the Base of Combined SPH—PPM Approach”, Vestnik magistratury, 2013, no. 5 (20), 40–44
[13] P. Colella, P.\;R. Woodward, “The piecewise parabolic method (PPM) for gas-dynamical simulations”, Journal of Computational Physics, 54:1 (1984), 174–201 | DOI | MR | Zbl
[14] A. Harten, P. Lax, B. van Leer, “On upstream differencing and Godunov type methods for hyperbolic conservation laws”, SIAM Review, 25:1 (1983), 35–61 | DOI | MR | Zbl
[15] G.-S. Jiang, C.\;W. Shu, “Efficient implementation of weighted ENO schemes”, Journal of Computational Physics, 126:1 (1996), 202–228 | DOI | MR | Zbl
[16] P.\;D. Lax, “Weak solutions of nonlinear hyperbolic equations and their numerical computation”, Communications on Pure and Applied Mathematics, 7:1 (1954), 159–193 | DOI | MR | Zbl
[17] B. van Leer, “Towards the ultimative conservative difference scheme. III. Upstreamcentered finite-difference schemes for ideal compressible flow”, Journal of Computational Physics, 23:3 (1977), 263–275 | DOI | MR | Zbl
[18] B. van Leer, “Towards the ultimate conservative difference scheme. V. A second order sequel to Godunov's method”, Journal of Computational Physics, 32:1 (1979), 101–136 | DOI | MR
[19] S.\;S. Khrapov, A.\;V. Pisarev, I.\;A. Kobelev, A.\;G. Zhumaliev, E.\;O. Agafonnikova, A.\;G. Losev, A.\;V. Khoperskov, “The numerical simulation of shallow water: estimation of the roughness coefficient on the flood stage”, Advances in Mechanical Engineering, 2013 (2013), 787016 | DOI