Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2016_6_a11, author = {M. L. Zaytsev and V. B. Akkerman}, title = {Another method for finding particular solutions of equations of mathematical physics}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {119--127}, publisher = {mathdoc}, number = {6}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2016_6_a11/} }
TY - JOUR AU - M. L. Zaytsev AU - V. B. Akkerman TI - Another method for finding particular solutions of equations of mathematical physics JO - Matematičeskaâ fizika i kompʹûternoe modelirovanie PY - 2016 SP - 119 EP - 127 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VVGUM_2016_6_a11/ LA - ru ID - VVGUM_2016_6_a11 ER -
%0 Journal Article %A M. L. Zaytsev %A V. B. Akkerman %T Another method for finding particular solutions of equations of mathematical physics %J Matematičeskaâ fizika i kompʹûternoe modelirovanie %D 2016 %P 119-127 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/VVGUM_2016_6_a11/ %G ru %F VVGUM_2016_6_a11
M. L. Zaytsev; V. B. Akkerman. Another method for finding particular solutions of equations of mathematical physics. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 6 (2016), pp. 119-127. http://geodesic.mathdoc.fr/item/VVGUM_2016_6_a11/
[1] V.\;B. Akkerman, M.\;L. Zaytsev, “Dimension Reduction in Fluid Dynamics Equations”, Zhurnal vychislitelnoy matematiki i matematicheskoy fiziki, 51:8 (2011), 1518–1530 | Zbl
[2] D.\;V. Beklemishev, Course of Analytical Geometry and Linear Algebra, Fizmatlit Publ., M., 2005, 304 pp.
[3] B. Bukhberger, “Groebner Bases. Algorithmic Method in the Theory of Polynomial Ideals”, Computer Algebra. The Symbolic and Algebraic Computation, Mir Publ., M., 1986, 331–372
[4] M.\;L. Zaytsev, V.\;B. Akkerman, “Hypothesis on Reduction of Overdetermined Systems of Differential Equations and its Application to Equations of Hydrodynamics”, Vestnik VGU, 2015, no. 2, 5–27
[5] M.\;L. Zaytsev, V.\;B. Akkerman, “Flow Problem and Dimension Reduction in the Navier–Stokes Equations”, Trudy MFTI, 7:3 (2015), 18–30
[6] L.\;D. Kudryavtsev, Mathematical Analysis Course, in 3 vols., Drofa Publ., M., 2003, 704 pp.
[7] R. Kurant, Partial Differential Equations, Mir Publ., M., 1964, 830 pp.
[8] L.\;D. Landau, E.\;M. Lifshitz, Course of Theoretical Physics, in 10 vols., v. I, Mechanics, Nauka Publ., M., 1988, 216 pp.
[9] A.\;I. Lurye, Analytical Mechanics, GIFML Publ., M., 1961, 824 pp. | MR
[10] A.\;D. Polyanin, V.\;F. Zaitsev, A.\;I. Zhurov, Methods for Solution of Equations of Mathematical Physics and Mechanics, Fizmatlit Publ., M., 2005, 256 pp.
[11] A.\;F. Sidorov, V.\;P. Shapeev, N.\;N. Yanenko, Method of Differential Constraints and Its Application to Gas Dynamics, Nauka Publ., Novosibirsk, 1984, 271 pp.
[12] A.\;N. Tikhonov, A.\;A. Samarskiy, Equations of Mathematical Physics, Nauka Publ., M., 1966, 742 pp.
[13] M.\;V. Fedoryuk, Ordinary Differential Equations, Lan Publ., SPb., 2003, 448 pp.