Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2016_5_a9, author = {A. V. Svetlov}, title = {Disreteness of the spectrum for the {Schr\"odinger} operator and metric transformation on manifold}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {97--103}, publisher = {mathdoc}, number = {5}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2016_5_a9/} }
TY - JOUR AU - A. V. Svetlov TI - Disreteness of the spectrum for the Schr\"odinger operator and metric transformation on manifold JO - Matematičeskaâ fizika i kompʹûternoe modelirovanie PY - 2016 SP - 97 EP - 103 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VVGUM_2016_5_a9/ LA - ru ID - VVGUM_2016_5_a9 ER -
%0 Journal Article %A A. V. Svetlov %T Disreteness of the spectrum for the Schr\"odinger operator and metric transformation on manifold %J Matematičeskaâ fizika i kompʹûternoe modelirovanie %D 2016 %P 97-103 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/VVGUM_2016_5_a9/ %G ru %F VVGUM_2016_5_a9
A. V. Svetlov. Disreteness of the spectrum for the Schr\"odinger operator and metric transformation on manifold. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 5 (2016), pp. 97-103. http://geodesic.mathdoc.fr/item/VVGUM_2016_5_a9/
[1] A.\;V. Svetlov, “Disreteness of the Spectrum for the Laplace–Beltrami Operator and Metric Transformation on Manifold”, Science Journal of Volgograd State University. Mathematics. Physics, 2009, no. 12, 45–51
[2] A.\;V. Svetlov, “A Discreteness Criterion for the Spectrum of the Laplace–Beltrami Operator on Quasimodel Manifolds”, Siberian Mathematical Journal, 43:6 (2002), 1362–1371 | MR | Zbl
[3] A.\;V. Svetlov, “On Spectrum of Schrodinger Operator on Manifold of a Special Type”, Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya: Matematika. Mekhanika. Informatika, 14:4 (2) (2014), 584–589 | Zbl
[4] A.\;V. Svetlov, “The Spectrum of the Schrödinger Operator on the Warped Products”, Science Journal of Volgograd State University. Mathematics. Physics, 2002, no. 7, 12–19
[5] A.\;V. Svetlov, “Discreteness Conditions for the Spectrum of the Schrödinger Operator”, Trudy po geometrii i analizu, Izd-vo in-ta matematiki, Novosibirsk, 2003, 376–383
[6] L. Saloff-Coste, “Uniformly elliptic operators on Riemannian manifolds”, J. Diff. Geom., 36 (1992), 417–450 | DOI | MR | Zbl