Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2016_5_a6, author = {N. M. Poluboyarova}, title = {Extremals of the equation for the potential energy functional}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {60--72}, publisher = {mathdoc}, number = {5}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2016_5_a6/} }
N. M. Poluboyarova. Extremals of the equation for the potential energy functional. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 5 (2016), pp. 60-72. http://geodesic.mathdoc.fr/item/VVGUM_2016_5_a6/
[1] V.\;A. Klyachin, “On Some Properties of Stable and Unstable Surfaces with Prescribed Mean Curvature”, Izvestiya: Mathematics, 70:4 (2006), 77–90 | DOI | Zbl
[2] V.\;A. Klyachin, N.\;M. Medvedeva, “On the Stability of Extremal Surfaces for a Certain Area-Type Functional”, Siberian Electronic Mathematical Reports, 4 (2007), 113–132 | Zbl
[3] V.\;A. Klyachin, V.\;M. Miklyukov, “Criteria of Instability of Surfaces of Zero Mean Curvature in Warped Lorentz Products”, Sbornik: Mathematics, 187:11 (1996), 67–88 | DOI | Zbl
[4] Sh. Kobayashi, K. Nomizu, Foundations of Differential Geometry, v. 1, Nauka Publ., M., 1981, 175 pp.
[5] Sh. Kobayashi, K. Nomizu, Foundations of Differential Geometry, v. 2, Nauka Publ., M., 1981, 212 pp.
[6] N.\;M. Medvedeva, “Research of the Stability of Extreme Surfaces of Rotation”, Izvestiya Saratovskogo universiteta. Seriya: Matematika. Mekhanika. Informatika, 7:2 (2007), 25–32 | Zbl
[7] E.\;G. Poznyak, E.\;V. Shikin, Differential Geometry: First Introduction, MGU Publ., M., 1990, 384 pp.
[8] N.\;M. Poluboyarova, “Research of the Stability of $n$-Dimensional Extreme Surfaces of Rotation”, Izv. vuzov. Mat., 2011, no. 2, 106–109
[9] V.\;G. Tkachev, “External geometry of $p$-minimal surfaces”, Geometry from the Pacific Rim, De Gruyter, Berlin–N.\;Y., 1997, 363–375 | MR | Zbl