Extremals of the equation for the potential energy functional
Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 5 (2016), pp. 60-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

To study the surfaces on the stability (or instability) is necessary to obtain the expression of the first and second functional variation. This article presents the first of the research of the functional of potential energy. We calculate the first variation of the potential energy functional. Proven some consequences of them. They help to build the extreme surface of rotation. Let $M$ be an $n$ dimensional connected orientable manifold from the class $C^2$. We consider a hypersurface ${\mathcal M}=(M,u)$, obtained by a $C^2$ -immersion $u: M\to {\mathbf{R}}^{n+1}$. Let $\Omega\subset\mathbf{R}^{n+1}$ be a domain such that $\mathcal M\subset\partial\Omega;$ $\Phi$, $\Psi:\, {\mathbf{R}}^{n+1}\to{\mathbf{R}}$$C^2$-smooth function. If $\xi$ the field of unit normals to the surface ${\mathcal M},$ then for any $C^2$-smooth surfaces ${\mathcal M}$ defined functional $$ W({\mathcal M})=\int\limits_{\mathcal M}{\Phi(\xi)\, d{\mathcal M}}+\int\limits_{\Omega}{\Psi(x)\, d{x}}, $$ which we call the functional of potential energy. It is the main object of study. Theorem of the first variation of the functional. Theorem 3. If $W(t)=W({\mathcal M}_t),$ then $$ W'(0)=\int \limits _{\mathcal M} {({\rm div}(D\Phi(\xi))^T-nH\Phi(\xi)+\Psi(x))h(x)\, d{\mathcal M}}, $$ where $h(x)\in C^1_0(\mathcal M)$. Theorem 4 is the the main theorem of of this article. It obtained the equations of extremals of the functional of potential energy. Theorem 4. A surface $\mathcal M$ of class $C^2$ is extremal of functional of potential energy if and only if $$ \sum \limits _{i=1}^{n}k_iG(E_i,E_i)=\Psi(x).$$ Corollary. If a extreme surface $\mathcal M$ is a plane, then the function $\Psi(x)=0.$ Theorem 5. If $f=x_{n+1}$ and $\Phi(\xi)=\Phi(\xi_{n+1}),$ then $$\mathrm {div}((\xi_{n+1}\Phi'(\xi_{n+1})-\Phi(\xi_{n+1}))\nabla f)=\Psi(x)\xi_{n+1}.$$
Keywords: variation of functional, extreme surface, functional type area, volumetric power density functional, functional of potential energy, mean curvature of extreme surface.
@article{VVGUM_2016_5_a6,
     author = {N. M. Poluboyarova},
     title = {Extremals of the equation for the potential energy functional},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {60--72},
     publisher = {mathdoc},
     number = {5},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2016_5_a6/}
}
TY  - JOUR
AU  - N. M. Poluboyarova
TI  - Extremals of the equation for the potential energy functional
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2016
SP  - 60
EP  - 72
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2016_5_a6/
LA  - ru
ID  - VVGUM_2016_5_a6
ER  - 
%0 Journal Article
%A N. M. Poluboyarova
%T Extremals of the equation for the potential energy functional
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2016
%P 60-72
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2016_5_a6/
%G ru
%F VVGUM_2016_5_a6
N. M. Poluboyarova. Extremals of the equation for the potential energy functional. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 5 (2016), pp. 60-72. http://geodesic.mathdoc.fr/item/VVGUM_2016_5_a6/

[1] V.\;A. Klyachin, “On Some Properties of Stable and Unstable Surfaces with Prescribed Mean Curvature”, Izvestiya: Mathematics, 70:4 (2006), 77–90 | DOI | Zbl

[2] V.\;A. Klyachin, N.\;M. Medvedeva, “On the Stability of Extremal Surfaces for a Certain Area-Type Functional”, Siberian Electronic Mathematical Reports, 4 (2007), 113–132 | Zbl

[3] V.\;A. Klyachin, V.\;M. Miklyukov, “Criteria of Instability of Surfaces of Zero Mean Curvature in Warped Lorentz Products”, Sbornik: Mathematics, 187:11 (1996), 67–88 | DOI | Zbl

[4] Sh. Kobayashi, K. Nomizu, Foundations of Differential Geometry, v. 1, Nauka Publ., M., 1981, 175 pp.

[5] Sh. Kobayashi, K. Nomizu, Foundations of Differential Geometry, v. 2, Nauka Publ., M., 1981, 212 pp.

[6] N.\;M. Medvedeva, “Research of the Stability of Extreme Surfaces of Rotation”, Izvestiya Saratovskogo universiteta. Seriya: Matematika. Mekhanika. Informatika, 7:2 (2007), 25–32 | Zbl

[7] E.\;G. Poznyak, E.\;V. Shikin, Differential Geometry: First Introduction, MGU Publ., M., 1990, 384 pp.

[8] N.\;M. Poluboyarova, “Research of the Stability of $n$-Dimensional Extreme Surfaces of Rotation”, Izv. vuzov. Mat., 2011, no. 2, 106–109

[9] V.\;G. Tkachev, “External geometry of $p$-minimal surfaces”, Geometry from the Pacific Rim, De Gruyter, Berlin–N.\;Y., 1997, 363–375 | MR | Zbl