Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2016_5_a5, author = {S. S. Platonov}, title = {On spectral synthesis in the space of tempered functions on finitely generated {Abelian} groups}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {42--59}, publisher = {mathdoc}, number = {5}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2016_5_a5/} }
TY - JOUR AU - S. S. Platonov TI - On spectral synthesis in the space of tempered functions on finitely generated Abelian groups JO - Matematičeskaâ fizika i kompʹûternoe modelirovanie PY - 2016 SP - 42 EP - 59 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VVGUM_2016_5_a5/ LA - ru ID - VVGUM_2016_5_a5 ER -
S. S. Platonov. On spectral synthesis in the space of tempered functions on finitely generated Abelian groups. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 5 (2016), pp. 42-59. http://geodesic.mathdoc.fr/item/VVGUM_2016_5_a5/
[1] Y. Berg, Y. Lefstrem, Interpolation Spaces. An Introduction, Mir Publ., M., 1980, 264 pp. | MR
[2] D.\;I. Gurevich, “Counterexamples to a Problem of L. Schwartz”, Funct. Anal. Appl., 9:2 (1975), 29–35 | Zbl
[3] B. Malgranzh, Ideals of Differentiable Functions, Mir Publ., M., 1968, 131 pp.
[4] V.\;V. Napalkov, Convolution Equations in Multidimensional Spaces, Nauka Publ., M., 1982, 240 pp.
[5] N.\;K. Nikolskiy, “Invariant Subspaces in Operator Theory and Function Theory”, Itogi Nauki i Tekhniki. Mat. Anal., 12, 1974, 199–412 | Zbl
[6] S.\;S. Platonov, “On Spectral Synthesis on Zero-Dimensional Abelian Groups”, Sbornik: Mathematics, 204:9 (2013), 99–114 | DOI | Zbl
[7] S.\;S. Platonov, “On Spectral Synthesis on Element-Wise Abelian Groups”, Sbornik: Mathematics, 206:8 (2015), 127–152 | DOI | Zbl
[8] S.\;S. Platonov, “On the Structure of Exponential Monomials on Some Locally Compact Abelian Groups”, Issues of Analysis, 2012, no. 19 (1), 3–14
[9] S.\;S. Platonov, “Spectral Synthesis in Some Topological Vector Spaces of Functions”, St. Petersburg Mathematical Journal, 22:5 (2010), 154–185
[10] A. Robertson, B. Robertson, Topological Vector Spaces, Mir Publ., M., 1967, 261 pp. | MR
[11] E. Hewitt, K. Ross, Abstract Harmonic Analysis, v. 1, Mir Publ., M., 1978, 654 pp.
[12] F. Bruhat, “Distributions sur un groupe localement compact et applications à létudedes représentations des groupes $p$-adiques”, Bull. Soc. math. France, 89 (1961), 43–75 | DOI | MR | Zbl
[13] M. Laczkovich, L. Székelyhidi, “Spectral synthesis on discrete groups”, Math. Proc. Camb. Phil. Soc., 143 (2007), 103–120 | DOI | MR | Zbl
[14] M.\;S. Osborne, “On the Schwartz–Bruhat space and Paley–Wiener theorem for locally compact Abelian groups”, J. of Funct. Anal., 19 (1975), 40–49 | DOI | MR | Zbl
[15] L. Schwartz, “Analyse et synthése harmonique dans les espaces de distributions”, Can. J. Math., 3:2 (1951), 503–512 | DOI | MR | Zbl
[16] L. Schwartz, “Théorie générale des fonctions moynne-périodiques”, Ann. of Math., 48:2 (1947), 875–929 | MR
[17] L. Székelyhidi, Discrete spectral synthesis and its applications, Springer, Berlin, 2006, 135 pp. | MR | Zbl