The Liouville type theorems for solution of stationary Schr\"odinger equation with finite Dirichlet integral
Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 5 (2016), pp. 13-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we learn some property of solutions of stationary Shrödinger equation \begin{equation} Lu=\Delta u-c(x)u=0, \tag{1} \end{equation} where $c(x)\geq0$ smooth function, with finite Dirichlet integral \begin{equation} \int\limits_{M}|u|^2+c(x)u^2dx \tag{2} \end{equation} on non compact Riemannian manifolds. We prove an analog of Ahlfors's theorem on existing of non-trivial boundary harmonic function with finite energy integral. Main result of this article is the next theorem. Let $M$ be non-compact Riemannian manifold. Theorem 1. If non-trivial solution of equation (1) with finite integral (2) exists on $M$ (this solution may be not bounded), then there exists bounded solution of equation (1) with finite energy integral (2). To proof this theorem we use the following lemmas. Lemma 1. (Maximum principle) Let $B$ be precompact open set in $M$ with smooth boundary. If $$Lu=0,\ x\in B,$$ then $$\sup\limits_{B}|u|=\sup\limits_{\partial B}|u|.$$ Lemma 2. Let $B\subset M$ precompact open subset on $M$, $\{\phi_i\}_{i=1}^\infty$ is uniformly bounded on $B$ family of solutions (1), $\phi_i\in C^{2,\alpha}(B).$ Then the family $\{\phi_i\}_{i=1}^\infty$ is compact in class $C^2(B')$, where $B'\subset B$. Let $F$ be set of functions from class $C^2(B)$ with finite Dirichlet integral $$\int\limits_{B} |\nabla y|^2+c(x)y^2dx.$$ Lemma 3. $F$ is linear space, also on $F$ can be defined dot product as $$\langle a,b\rangle=\int\limits_{B} \left(\langle\nabla a, \nabla b\rangle +c(x)ab\right)dx,\quad \forall a,b\in F.$$ and norm for this dot product as $$\|a\|=\langle a,a\rangle^{\frac{1}{2}}=\left(\int\limits_{B}|\nabla a|^2+c(x)a^2dx\right)^{\frac{1}{2}}.$$ Lemma 4. (Dirichlet principle). Let $B\subset M$—precompact open subset on $M$ with smooth boundary. If for functions $u,v\in C^2(B)$ $$ \left \{ \begin{array}{c} \Delta u-c(x)u=0, x\in B, \\ u|_{\partial B}=v|_{\partial B}, \end{array} \right. $$ then $$\int\limits_{B}|\nabla u|^2+c(x)u^2dx\leq\int\limits_{B}|\nabla v|^2+c(x)v^2dx.$$
Keywords: Dirichlet integral, stationary Schrödinger equation, Liouville type theorems, Ahlfors's theorem, riemannian manifolds.
@article{VVGUM_2016_5_a2,
     author = {A. G. Losev and V. V. Filatov},
     title = {The {Liouville} type theorems for solution  of stationary {Schr\"odinger} equation  with finite {Dirichlet} integral},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {13--23},
     publisher = {mathdoc},
     number = {5},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2016_5_a2/}
}
TY  - JOUR
AU  - A. G. Losev
AU  - V. V. Filatov
TI  - The Liouville type theorems for solution  of stationary Schr\"odinger equation  with finite Dirichlet integral
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2016
SP  - 13
EP  - 23
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2016_5_a2/
LA  - ru
ID  - VVGUM_2016_5_a2
ER  - 
%0 Journal Article
%A A. G. Losev
%A V. V. Filatov
%T The Liouville type theorems for solution  of stationary Schr\"odinger equation  with finite Dirichlet integral
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2016
%P 13-23
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2016_5_a2/
%G ru
%F VVGUM_2016_5_a2
A. G. Losev; V. V. Filatov. The Liouville type theorems for solution  of stationary Schr\"odinger equation  with finite Dirichlet integral. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 5 (2016), pp. 13-23. http://geodesic.mathdoc.fr/item/VVGUM_2016_5_a2/

[1] D. Gilbarg, M. Trudinger, Elliptic Partial Differential Equations of Second Order, Nauka Publ., M., 1989, 464 pp. | MR

[2] A.\;A. Grigor'yan, N.\;S. Nadirashvili, “Liouville-Type Theorems and External Bound Problems”, Russian Mathematics, 1987, no. 5, 25–33

[3] A.\;A. Grigor'yan, “About Existing of Positive Fundomental Solutions of Laplass’s Equation on Riemannian Manifolds”, Sbornik: Mathematics, 128:3 (1985), 354–363 | MR | Zbl

[4] A.\;A. Grigor'yan, “Bounded Solutions of Stationary Shrödinger Equations on Non-Compact Riemannian Manifolds”, Trudy seminara I.\;G. Petrovskogo, 14, 1989, 66–77 | Zbl

[5] R.\;F. Kurmakaev, A.\;G. Losev, “Asimptotic Property of Non Bounded Solutions of Ellepitic Equation Model Riemannian Manifolds”, Science Journal of Volgograd State University. Mathematics. Physics, 2012, no. 2, 30–40

[6] A.\;G. Losev, E.\;A. Mazepa, “About Asimptotic Property of Solutions of Ellepitic Equation on Non-Compact Riemannian Manifolds”, Russian Mathematics, 1999, no. 6, 41–49 | Zbl

[7] A.\;F. Timan, V.\;N. Trofimov, Introducing in Theory of Harmonic Functions, Nauka Publ., M., 1968, 207 pp. | MR

[8] S.\;Y. Cheng, S.\;T. Yau, “Differential equations on Riemannian manifolds and their geometric applications”, Comm. Pure and Appl. Math., 28:3 (1975), 333–354 | DOI | MR | Zbl

[9] S.\;R. Sario, M. Nakai, C. Wang, L.\;O. Chung, Classification theory of Riemannian manifolds, Springer-Verlag, Berlin–Heidelberg, 1977, 498 pp. | MR | Zbl

[10] A. Grigor'yan, “Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds”, Bulletin of Amer. Math. Soc., 36 (1999), 135–249 | DOI | MR | Zbl

[11] S.\;A. Korolkov, A.\;G. Losev, “Generalized Harmonic Functions of Riemannian Manifolds with Ends”, Mathematische Zeitschrift, 272:1 (2012), 459–472 | DOI | MR | Zbl