Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2016_5_a2, author = {A. G. Losev and V. V. Filatov}, title = {The {Liouville} type theorems for solution of stationary {Schr\"odinger} equation with finite {Dirichlet} integral}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {13--23}, publisher = {mathdoc}, number = {5}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2016_5_a2/} }
TY - JOUR AU - A. G. Losev AU - V. V. Filatov TI - The Liouville type theorems for solution of stationary Schr\"odinger equation with finite Dirichlet integral JO - Matematičeskaâ fizika i kompʹûternoe modelirovanie PY - 2016 SP - 13 EP - 23 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VVGUM_2016_5_a2/ LA - ru ID - VVGUM_2016_5_a2 ER -
%0 Journal Article %A A. G. Losev %A V. V. Filatov %T The Liouville type theorems for solution of stationary Schr\"odinger equation with finite Dirichlet integral %J Matematičeskaâ fizika i kompʹûternoe modelirovanie %D 2016 %P 13-23 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/VVGUM_2016_5_a2/ %G ru %F VVGUM_2016_5_a2
A. G. Losev; V. V. Filatov. The Liouville type theorems for solution of stationary Schr\"odinger equation with finite Dirichlet integral. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 5 (2016), pp. 13-23. http://geodesic.mathdoc.fr/item/VVGUM_2016_5_a2/
[1] D. Gilbarg, M. Trudinger, Elliptic Partial Differential Equations of Second Order, Nauka Publ., M., 1989, 464 pp. | MR
[2] A.\;A. Grigor'yan, N.\;S. Nadirashvili, “Liouville-Type Theorems and External Bound Problems”, Russian Mathematics, 1987, no. 5, 25–33
[3] A.\;A. Grigor'yan, “About Existing of Positive Fundomental Solutions of Laplass’s Equation on Riemannian Manifolds”, Sbornik: Mathematics, 128:3 (1985), 354–363 | MR | Zbl
[4] A.\;A. Grigor'yan, “Bounded Solutions of Stationary Shrödinger Equations on Non-Compact Riemannian Manifolds”, Trudy seminara I.\;G. Petrovskogo, 14, 1989, 66–77 | Zbl
[5] R.\;F. Kurmakaev, A.\;G. Losev, “Asimptotic Property of Non Bounded Solutions of Ellepitic Equation Model Riemannian Manifolds”, Science Journal of Volgograd State University. Mathematics. Physics, 2012, no. 2, 30–40
[6] A.\;G. Losev, E.\;A. Mazepa, “About Asimptotic Property of Solutions of Ellepitic Equation on Non-Compact Riemannian Manifolds”, Russian Mathematics, 1999, no. 6, 41–49 | Zbl
[7] A.\;F. Timan, V.\;N. Trofimov, Introducing in Theory of Harmonic Functions, Nauka Publ., M., 1968, 207 pp. | MR
[8] S.\;Y. Cheng, S.\;T. Yau, “Differential equations on Riemannian manifolds and their geometric applications”, Comm. Pure and Appl. Math., 28:3 (1975), 333–354 | DOI | MR | Zbl
[9] S.\;R. Sario, M. Nakai, C. Wang, L.\;O. Chung, Classification theory of Riemannian manifolds, Springer-Verlag, Berlin–Heidelberg, 1977, 498 pp. | MR | Zbl
[10] A. Grigor'yan, “Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds”, Bulletin of Amer. Math. Soc., 36 (1999), 135–249 | DOI | MR | Zbl
[11] S.\;A. Korolkov, A.\;G. Losev, “Generalized Harmonic Functions of Riemannian Manifolds with Ends”, Mathematische Zeitschrift, 272:1 (2012), 459–472 | DOI | MR | Zbl