Mots-clés : uniform convergence, estimation of uniform convergence.
@article{VVGUM_2016_5_a11,
author = {I. V. Truhlyaeva},
title = {On the convergence of almost polynomial solutions of the minimal surface},
journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
pages = {124--139},
year = {2016},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VVGUM_2016_5_a11/}
}
I. V. Truhlyaeva. On the convergence of almost polynomial solutions of the minimal surface. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 5 (2016), pp. 124-139. http://geodesic.mathdoc.fr/item/VVGUM_2016_5_a11/
[1] I.\;S. Berezin, N.\;P. Zhidkov, Computing Method, v. 2, Fizmatlit Publ., M., 1959, 620 pp.
[2] S.\;N. Bernshteyn, I.\;G. Petrovskiy, “On the First Boundary Value Problem (Dirichlet’s Problem) for Equations of the Elliptic Type and on the Properties of Functions Satisfying Such Equations”, Russian Mathematical Surveys, 1941, no. 8, 32–74
[3] S.\;N. Bernshteyn, “On Equations of Calculus of Variations”, Russian Mathematical Surveys, 1941, no. 8, 8–31
[4] M.\;A. Gatsunaev, A.\;A. Klyachin, “On Uniform Convergence of Piecewise-Linear Solutions to Minimal Surface Equation”, Ufa Mathematical Journal, 24:3 (6) (2014), 3–16
[5] D. Gilbarg, M. Trudinger, Elliptic Partial Differential Equations of Second Order, Nauka Publ., M., 1989, 464 pp.
[6] L.\;V. Kantorovich, V.\;I. Krylov, Approximate Methods of Higher Analysis, Fizmatlit Publ., M., 1962, 709 pp.
[7] L.\;V. Kantorovich, G.\;P. Akilov, Functional Analysis in Normed Spaces, Fizmatlit Publ., M., 1959, 684 pp.
[8] A.\;A. Klyachin, V.\;A. Klyachin, E.\;G. Grigoryeva, “Visualisation of Calculating the Form of Minimal Area Surface”, Nauchnaya vizualizatsiya, 2:6 (2014), 34–42 | Zbl
[9] A.\;A. Klyachin, “On Convergence Rate of Sequence Providing Minimum in Variational Problem”, Science Journal of Volgograd State University. Mathematics. Physics, 2012, no. 1 (16), 12–20
[10] A.\;A. Klyachin, I.\;V. Trukhlyaeva, “On Convergence of Polynomial Solutions of Minimal Surface”, Ufa Mathematical Journal, 8:1 (2016), 72–83
[11] S.\;G. Mikhlin, Variational Methods in Mathematical Physics, Nauka Publ., M., 1970, 512 pp.
[12] I.\;P. Natanson, Constructive Theory of Functions, Gostekhizdat Publ., M., 1949, 688 pp.
[13] I.\;Yu. Kharrik, “On Approximation of Functions Vanishing on the Boundary of a Region by Functions of a Special Form”, Sbornik: Mathematics, 37 (79):2 (1955), 353–384 | Zbl
[14] R.\;C. Bassanezi, U. Massari, “The Dirichlet problem for the minimal surface equation in non-regular domains”, Ann. Univ. Ferrara, 24 (1978), 181–189 | MR | Zbl
[15] R. Finn, “Remarks relevant to minimal surfaces and to surfaces of constant mean curvature”, J. d'Analyse Math., 14 (1965), 139–160 | DOI | MR | Zbl
[16] H. Jenkins, J. Serrin, “The Dirichlet problem for the minimal surface equation in higher dimension”, Journal für die reine und angewandte Mathematik, 229 (1968), 170–187 | MR | Zbl
[17] A. Jonsson, “Triangulations of closed sets and bases in function spaces”, Ann. Acad. Sci. Fenn. Math., 29:1 (2004), 43–58 | MR | Zbl
[18] T. Rado, “The problem of the least area and the problem of Plateau”, J. d'Analyse Math. Z, 32 (1930), 763–796 | DOI | MR
[19] J. Serrin, “The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables”, Phil. Trans. Royal Soc. London, 264:1153 (1964), 313–496 | MR
[20] G. Stampacchia, “On some multiple integral problems in the calculus of variations”, Comm. Pure Appl. Math., 16 (1963), 382–422 | MR