Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2016_5_a10, author = {V. I. Sukovykh}, title = {The formulas for the lower {Taylor} coefficients of homogeneous surfaces}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {104--123}, publisher = {mathdoc}, number = {5}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2016_5_a10/} }
V. I. Sukovykh. The formulas for the lower Taylor coefficients of homogeneous surfaces. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 5 (2016), pp. 104-123. http://geodesic.mathdoc.fr/item/VVGUM_2016_5_a10/
[1] V.\;S. Arapov, A.\;V. Loboda, “Real Taylor Coefficients of Homogeneous Hypersurfaces in Space ${\mathbb{C}}^3$”, Materialy 12-y mezhdunarodnoy letney shkoly-konferentsii, Izd-vo Kazan. mat. o-va, Kazan, 2015, 34–35
[2] N.\;G. Kruzhilin, P.\;A. Soldatkin, “Affine and Holomorphic Equivalence of Tube Domains in ${\mathbb{C}}^2$”, Mathematical Notes, 75:5 (2004), 670–682 | DOI | MR | Zbl
[3] A.\;V. Loboda, V.\;I. Sukovykh, “Using of Computer Algorithms in the Problem of Coefficients Description Homogeneous Surfaces”, Vestnik VGU. Sistemnyy analiz, 2015, no. 1, 14–22 | MR
[4] A.\;V. Loboda, “Local Description of Homogeneous Real Hypersurfaces of the Two-Dimensional Complex Space in Terms of Their Normal Equations”, Funktsion. analiz, 34:2 (2000), 33–42 | DOI | MR | Zbl
[5] A.\;V. Loboda, V.\;I. Sukovykh, “Taylor Coefficients of Holomorphically Homogeneous Surfaces of General Position”, Tez. dokl. Voronezh. zim. mat. shk., Izd-vo VGU, Voronezh, 2015, 72–73
[6] A.\;V. Loboda, V.\;I. Sukovykh, “Basic Sets of Coefficients for Holomorphically Homogeneous SPC-Hypersurfaces in ${\mathbb{C}}^3$”, Geometricheskiy analiz i ego prilozheniya, Materialy 3-y Mezhdunar. shk.-konf., Izd-vo VolGU Publ., Volgograd, 2016, 133–138
[7] A.\;V. Loboda, “Determination of a Homogeneous Strictly Pseudoconvex Surface From the Coefficients of Its Normal Equation”, Mathematical Notes, 73:3 (2003), 419–423 | DOI | MR | Zbl
[8] A.\;V. Loboda, “Homogeneous Strictly Pseudoconvex Hypersurfaces in ${\mathbb{C}}^3$ with Two-Dimensional Isotropy Groups”, Sbornik: Mathematics, 192 (2001), 3–24 | DOI | Zbl
[9] M. Sabzevari, A. Hashemi, B.\;M. Alizadeh, J. Merker, Applications of differential algebra for computing Lie algebras of infinitesimal CR-automorphisms, arXiv: 1212.3070
[10] V.\;K. Beloshapka, I.\;G. Kossovskiy, “Homogeneous hypersurfaces in ${\mathbb{C}}^3$, associated with a model CR-cubic”, J. Geom. Anal., 20:3 (2010), 538–564 | DOI | MR | Zbl
[11] E. Cartan, “Sur la geometrie pseudoconforme des hypersurfaces de deux variables complexes”, Ann. Math. Pura Appl., 11:4 (1932), 17–90 | MR
[12] S.\;S. Chern, J.\;K. Moser, “Real hypersurfaces in complex manifolds”, Acta Math., 133:3 (1974), 219–271 | DOI | MR
[13] M. Eastwood, V.\;V. Ezhov, “On affine normal forms and a classification of homogeneous surfaces in affine three-space”, Geom. Dedicata, 77 (1999), 11–69 | DOI | MR | Zbl
[14] G. Fels, W. Kaup, “On affine normal forms and a classification of homogeneous surfaces in affine three-space”, Acta Math., 210 (2008), 1–82 | DOI | MR
[15] A.\;V. Isaev, W. Kaup, “On the number of affine equivalence classes of spherical tube hypersurfaces”, Math. Ann., 349 (2011), 59–74 | DOI | MR | Zbl