Lindelef type theorems for the minimal surface at infinity
Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 5 (2016), pp. 7-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

A lot of works on researching of solutions of equation of the minimal surfaces, which are given over unbounded domains (see, for example, [1–3; 5–7]) in which various tasks of asymptotic behavior of the minimal surfaces were studied. The obtained theorems Lindelef type about the limiting value of the gradient of the solution of the equation of minimal surfaces and Gaussian curvature of the considered surface at infinity. Let $z=f(x,y)$ is a solution of the equation of minimal surfaces (1) given over the domain $D$ bounded by two curves $L_1$ and $L_2$, coming from the same point and going into infinity. We assume that $f(x,y) \in C^2(\overline {D})$. For the Gaussian curvature of minimal surfaces $K(x,y)$ will be the following theorem. Theorem. If the Gaussian curvature $K(x,y)$ of the minimal surface (1) on the curves $L_1$ and $L_2$ satisfies the conditions $$ K(x,y) \to b_n, \qquad ((x,y)\to \infty, (x,y)\in L_n ) \qquad n=1,\ 2, $$ and, in addition, the gradient of the function $f(x,y)$ on the curves $L_1$ and $L_2$ has the equal limit values for $(x,y)\to \infty$, this is one of two possibilities: or $ K(x,y) $ not limited to $D$, or $b_1 = b_2 = b$ and $K(x,y) \to b$ for $ (x,y)$ tending to infinity along any path lying in the domain $D$.
Keywords: equations of the minimal surfaces, gaussian curvature, asymptotic behavior, holomorphic function, isothermal coordinates, holomorphic in the metric of the surface function.
@article{VVGUM_2016_5_a1,
     author = {R. S. Akopyan},
     title = {Lindelef type theorems for the minimal surface at infinity},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {7--12},
     publisher = {mathdoc},
     number = {5},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2016_5_a1/}
}
TY  - JOUR
AU  - R. S. Akopyan
TI  - Lindelef type theorems for the minimal surface at infinity
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2016
SP  - 7
EP  - 12
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2016_5_a1/
LA  - ru
ID  - VVGUM_2016_5_a1
ER  - 
%0 Journal Article
%A R. S. Akopyan
%T Lindelef type theorems for the minimal surface at infinity
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2016
%P 7-12
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2016_5_a1/
%G ru
%F VVGUM_2016_5_a1
R. S. Akopyan. Lindelef type theorems for the minimal surface at infinity. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 5 (2016), pp. 7-12. http://geodesic.mathdoc.fr/item/VVGUM_2016_5_a1/

[1] R.\;S. Akopyan, “About the Admissible Speed of Approaching to Zero of Gaussian Curvature of Minimal Surface over Strip Domain”, Science Journal of Volgograd State University. Mathematics. Physics, 2012, no. 2(17), 4–8

[2] R.\;S. Akopyan, “Limit Value of the Gaussian Curvature of the Minimal Surface at Infinity”, Science Journal of Volgograd State University. Mathematics. Physics, 2016, no. 1 (32), 6–10

[3] R.\;S. Akopyan, “Fragmén–Lindelöf Type Theorems for the Minimal Surface over Strip Domain”, Science Journal of Volgograd State University. Mathematics. Physics, 2013, no. 2 (19), 6–12 | MR

[4] M.\;A. Evgrafov, Analytic Functions, Nauka Publ., M., 1991, 448 pp. | MR

[5] V.\;M. Miklyukov, “On the Hyberbolicity Criterior for Noncompact Riemannian Manifolds of Special Type”, Granichnye zadachi matematicheskoy fiziki, Naukova Dumka Publ., Kiev, 1983, 137–146 | MR

[6] R. Oserman, “Minimal Surfaces”, Russian Mathematical Surveys, 22:4 (1967), 55–136 | MR

[7] V.\;I. Pelikh, “Theorems of Fragmén–Lindelöf on Minimal Surfaces”, Geometricheskiy analiz i ego prilozheniya: Nauchnye shkoly VolGU, Izd-vo VolGU, Volgograd, 1999, 352–368

[8] J.\;C.\;C. Nitsche, Vorlesungen über Minimalflächen, Springer-Verlag, Berlin–Heidelberg, 1975, 199 pp. | MR | Zbl