On non-uniqueness sets for spaces of holomorphic functions
Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 4 (2016), pp. 108-115.

Voir la notice de l'article provenant de la source Math-Net.Ru

Problems of description of zero subsequences for weight spaces of holomorphic functions are reduced, according to a general scheme, to solving certain problems in weight classes of subharmonic functions. Let $D$ be a domain in the complex plane $\mathbb C$. We associate with every at most countable sequence $\Lambda = \{\lambda_k\}_{k=1,2, \dots} \subset D$, without accumulation points in $D$, the counting measure $n_{\Lambda}(S) := \sum_{\lambda_k\in S} 1$. We denote by $\mathrm{Hol} (D)$ the vector space of all holomorphic functions in $D$. For $0\neq f\in \mathrm{Hol} (D)$, denote by $\mathrm{Zero}_f$ zero sequence of $f$ with account of multiplicities. A sequence $\Lambda\subset D$ is called the non-uniqueness sequence for a subspace $H\subset \mathrm{Hol} (D)$, if there exists a nonzero function $f\in H$ such that $\Lambda \subset \mathrm{Zero}_f$, i. e. $n_\Lambda (\lambda)\leq n_{\mathrm{Zero}_f}(\lambda)$ for all $\lambda \in D$. We denote by $\mathrm{sbh} (D)$ the convex cone of all subharmonic functions in $D\subset \mathbb{C}$. For $-\infty\not\equiv s\in \mathrm{sbh} (D)$ we denote by $\nu_s$ the Riesz measure of $s$. A Borel positive measure $\nu$ is called the submeasure for a subset $S\subset \mathrm{sbh} (D)$, if there exists a function $s\in S$, $s\not\equiv -\infty$, with the Riesz measure $\nu_s\geq \nu$ on $D$. For a (weight) function $M\colon D\to [-\infty,+\infty]$ we define the weight classes $\mathrm{sbh}(D;M]:=\{s \in \mathrm{sbh} (D) \colon s\leq M +\mathrm{const} \; \text{on } D \}$ and $\mathrm{Hol}(D;\exp M]:=\{f\in \mathrm{Hol} (D)\colon |f|\leq \mathrm{const} \cdot \exp M \; \text{on } D \}$, where $\mathrm{const}$ is a constant. Let $S$ be a subset of the extended complex plane $\mathbb{C}_{\infty}:=\mathbb{C}\cup \{\infty\}$. Denote by $\mathrm{clos} S$ and $\mathrm{bd} S$ the closure and the boundary of $S$ in $\mathbb{C}_{\infty}$ resp. Let $\mathrm{dist} (\cdot , \cdot)$ be the Euclidean distance between two objects (points or subsets) in $\mathbb{C}$. Let $d\colon D\to (0,1]$ be a continuous function such that $0$, $z\in D$. We will juxtapose to a weight function $N \colon D \to [-\infty,+\infty]$ its average value of $N$ over the disk $\{z'\in \mathbb{C} \colon |z'-z|$: \begin{equation*} B (z,r;N):=\frac{1}{\pi r^2}\int_0^{2\pi}\int_0^r N(z+te^{i\theta}) t\, d t \,d \theta, \end{equation*} and some its “lifting” $N^{\uparrow}\colon D\to [-\infty,+\infty]$ so that $$ \begin{aligned} N^{\uparrow}(z)= B(z,d(z);N)+\ln\frac{1}{d(z)}, \quad \text{if} \; \mathbb{C}_{\infty}\setminus \mathrm{clos} D\neq \varnothing; \\ ^{\uparrow}(z):= B\Bigl(z,\frac{1}{(1+|z|)^P};N\Bigr), \quad \text{if} \; D=\mathbb{C}, \end{aligned} $$ where $P\geq 0$ is an arbitrary fixed number. Theorem 1. Let $N,M, M-N\in \mathrm{sbh} (D)$, $N,M\neq \boldsymbol{-\infty}$, and $\Lambda$ be a sequence in $D$. If $\Lambda$ is the non-uniqueness sequence for $\mathrm{Hol}(D;\exp N]$, then $n_\Lambda+\nu_{M-N}$ is submeasure for $\mathrm{sbh}(D;M]$. Conversely, if $n_\Lambda+\nu_{M-N}$ is a submeasure for $\mathrm{sbh}(D;M]$ and $N$ is a continuous function on $D$, then $\Lambda$ is a non-uniqueness sequence for $\mathrm{Hol}(D;\exp N^{\uparrow}]$ with a suitable lifting $N^{\uparrow}$ (see above cases $D=\mathbb{C}$ with an arbitrary fixed $P\geq 0$ and $\mathbb{C}_{\infty}\setminus \mathrm{clos} D\neq \varnothing$). We also consider an important special case of subharmonic positively homogeneous of degree $\rho>0$ weight functions $N, M$ on $\mathbb{C}$ (see Section 2, Theorem 2).
Keywords: holomorphic function, zero sequence, subharmonic function, Riesz measure, non-uniqueness sequence.
@article{VVGUM_2016_4_a8,
     author = {B. N. Khabibullin and F. B. Khabibullin},
     title = {On non-uniqueness sets for spaces of holomorphic functions},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {108--115},
     publisher = {mathdoc},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2016_4_a8/}
}
TY  - JOUR
AU  - B. N. Khabibullin
AU  - F. B. Khabibullin
TI  - On non-uniqueness sets for spaces of holomorphic functions
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2016
SP  - 108
EP  - 115
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2016_4_a8/
LA  - ru
ID  - VVGUM_2016_4_a8
ER  - 
%0 Journal Article
%A B. N. Khabibullin
%A F. B. Khabibullin
%T On non-uniqueness sets for spaces of holomorphic functions
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2016
%P 108-115
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2016_4_a8/
%G ru
%F VVGUM_2016_4_a8
B. N. Khabibullin; F. B. Khabibullin. On non-uniqueness sets for spaces of holomorphic functions. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 4 (2016), pp. 108-115. http://geodesic.mathdoc.fr/item/VVGUM_2016_4_a8/

[1] A.\;V. Abanin, Weakly Sufficient Sets and Absolutely Representing Systems, Dr. Phys. and Math. Sci. Diss., Rostov-on-Don, 1995, 268 pp.

[2] M.\;A. Evgrafov, Asymptotic Estimates and Entire Functions, Fizmatlit Publ., M., 1979, 198 pp. | MR

[3] B.\;Ya. Levin, Distribution of Roots of Entire Functions, Fizmatgiz Publ., M., 1956, 536 pp.

[4] L.\;S. Maergoyz, Asymptotic Characteristics of Entire Functions and Their Application, Nauka Publ., Novosibirsk, 1996, 398 pp. | MR

[5] B.\;N. Khabibullin, T.\;Yu. Bayguskarov, “The Logarithm of the Modulus of a Holomorphic Function as a Minorant for a Subharmonic Function”, Mathematical Notes, 99:4 (2016), 588–602 | DOI | MR | Zbl

[6] B.\;N. Khabibullin, Completeness of Exponential System and Uniqueness Sets, RITs BashGU Publ., Ufa, 2012, 198 pp.

[7] B.\;N. Khabibullin, “Sequences of Non-Uniqueness for Weight Spaces of Holomorphic Functions”, Russian Mathematics, 59:4 (2015), 63–70 | Zbl

[8] B.\;Ya. Levin, Lectures on entire functions, Transl. Math. Monographs, 150, Amer. Math. Soc., Providence, 1996, 180 pp. | MR | Zbl

[9] Th. Ransford, Potential Theory in the Complex Plane, Cambridge University Press, Cambridge, 1995, 232 pp. | MR | Zbl