Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2016_4_a8, author = {B. N. Khabibullin and F. B. Khabibullin}, title = {On non-uniqueness sets for spaces of holomorphic functions}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {108--115}, publisher = {mathdoc}, number = {4}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2016_4_a8/} }
TY - JOUR AU - B. N. Khabibullin AU - F. B. Khabibullin TI - On non-uniqueness sets for spaces of holomorphic functions JO - Matematičeskaâ fizika i kompʹûternoe modelirovanie PY - 2016 SP - 108 EP - 115 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VVGUM_2016_4_a8/ LA - ru ID - VVGUM_2016_4_a8 ER -
B. N. Khabibullin; F. B. Khabibullin. On non-uniqueness sets for spaces of holomorphic functions. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 4 (2016), pp. 108-115. http://geodesic.mathdoc.fr/item/VVGUM_2016_4_a8/
[1] A.\;V. Abanin, Weakly Sufficient Sets and Absolutely Representing Systems, Dr. Phys. and Math. Sci. Diss., Rostov-on-Don, 1995, 268 pp.
[2] M.\;A. Evgrafov, Asymptotic Estimates and Entire Functions, Fizmatlit Publ., M., 1979, 198 pp. | MR
[3] B.\;Ya. Levin, Distribution of Roots of Entire Functions, Fizmatgiz Publ., M., 1956, 536 pp.
[4] L.\;S. Maergoyz, Asymptotic Characteristics of Entire Functions and Their Application, Nauka Publ., Novosibirsk, 1996, 398 pp. | MR
[5] B.\;N. Khabibullin, T.\;Yu. Bayguskarov, “The Logarithm of the Modulus of a Holomorphic Function as a Minorant for a Subharmonic Function”, Mathematical Notes, 99:4 (2016), 588–602 | DOI | MR | Zbl
[6] B.\;N. Khabibullin, Completeness of Exponential System and Uniqueness Sets, RITs BashGU Publ., Ufa, 2012, 198 pp.
[7] B.\;N. Khabibullin, “Sequences of Non-Uniqueness for Weight Spaces of Holomorphic Functions”, Russian Mathematics, 59:4 (2015), 63–70 | Zbl
[8] B.\;Ya. Levin, Lectures on entire functions, Transl. Math. Monographs, 150, Amer. Math. Soc., Providence, 1996, 180 pp. | MR | Zbl
[9] Th. Ransford, Potential Theory in the Complex Plane, Cambridge University Press, Cambridge, 1995, 232 pp. | MR | Zbl