Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2016_4_a7, author = {B. S. Timergaliev}, title = {Brunn--Minkowski type inequality for generalized power moments in the form of {Hadwiger}}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {92--107}, publisher = {mathdoc}, number = {4}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2016_4_a7/} }
TY - JOUR AU - B. S. Timergaliev TI - Brunn--Minkowski type inequality for generalized power moments in the form of Hadwiger JO - Matematičeskaâ fizika i kompʹûternoe modelirovanie PY - 2016 SP - 92 EP - 107 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VVGUM_2016_4_a7/ LA - ru ID - VVGUM_2016_4_a7 ER -
B. S. Timergaliev. Brunn--Minkowski type inequality for generalized power moments in the form of Hadwiger. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 4 (2016), pp. 92-107. http://geodesic.mathdoc.fr/item/VVGUM_2016_4_a7/
[1] F.\;G. Avkhadiev, B.\;S. Timergaliev, “Brunn–Minkowski Type Inequality for Conformal and Euclidean Moments of Domains”, Russian Mathematics, 2014, no. 5, 64–67 | Zbl
[2] F.\;G. Avkhadiev, “Solution of the Generalized Saint-Venant Problem”, Sbornik: Mathematics, 1998, no. 12, 3–12 | DOI | Zbl
[3] B.\;S. Timergaliev, “Brunn–Minkowski Type Inequality in Hadwiger's Form for Power Moments”, Uchen. zap. Kazan. un-ta, 2016, no. 1, 90–106 | MR
[4] F. Barthe, “The Brunn–Minkowski theorem and related geometric and functional inequalities”, Proceedings of the International Congress of Mathematicians, v. 2, 2006, 1529–1546 | MR | Zbl
[5] C. Borell, “Diffusion equations and geometric inequalities”, Potential Anal., 12 (2000), 49–71 | DOI | MR | Zbl
[6] H.\;J. Brascamp, E.\;H. Lieb, “On Extensions of the Brunn–Minkowski and Prékopa–Leindler Theorems, Including Inequalities for Log concave Functions, and with an Application to the Diffusion Equation”, Journal of Functional Analysis, 22 (1976), 366–389 | DOI | MR | Zbl
[7] A. Figalli, F. Maggi, A. Pratelli, “A refined Brunn–Minkowski inequality for convex sets”, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 26 (2009), 2511–2519 | DOI | MR | Zbl
[8] R.\;J. Gardner, A. Zvavitch, “Gaussian Brunn–Minkowski inequalities”, Trans. Amer. Math. Soc., 362:10 (2010), 5333–5353 | DOI | MR | Zbl
[9] R.\;J. Gardner, “The Brunn–Minkowski inequality”, Bulletin of the American Mathematical Society, 39 (2002), 355–405 | DOI | MR | Zbl
[10] H. Hadwiger, D. Ohmann, “Brunn–Minkowskischer Satz und Isoperimetrie”, Mathematische Zeitschrift, 66 (1956), 1–8 | DOI | MR | Zbl
[11] H. Hadwiger, “Konkave eikerperfunktionale und hoher tragheitsmomente”, Comment Math. Helv., 30 (1956), 285–296 | DOI | MR | Zbl
[12] G. Keady, “On a Brunn–Minkowski theorem for a geometric domain functional considered by Avhadiev”, Journal of Inequalities in Pure and Applied Mathematics, 8 (2007), 1–10 | MR
[13] L. Liendler, “On a certain converse of Hölder's inequality II”, Acta Sci. Math., 33 (1972), 217–223 | MR
[14] L.\;A. Lusternik, “Die Brunn–Minkowskische Ungleichung fur beliebige messbare Mengen”, Comptes Rendus de l'Académie des Sciences. Series I, Mathematics, 8 (1935), 55–58
[15] S. Lv, “Dual Brunn–Minkowski inequality for volume differences”, Geom. Dedicata, 145 (2010), 169–180 | DOI | MR | Zbl
[16] A. Prékopa, “Logariphmic concave measures with application to stochastic programming”, Acta Sci. Math., 32 (1971), 301–315 | MR