Brunn--Minkowski type inequality for generalized power moments in the form of Hadwiger
Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 4 (2016), pp. 92-107.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we built a class of domain functionals in Euclidian space and proved Brunn–Minkowski type inequality applied to the mentioned class. The resulting inequality generalizes corresponding inequality for moments of inertia in relation to the center of mass and hyperplanes proven by H. Hadwiger. Let $\Omega$ be a bounded domain in $\mathbb{R}^{n}$. Define the functional $$ I(k;m;\Omega)=\int\limits_{\Omega}\left(\alpha_{1}|x_{1}-s_{1}|^{k}+\cdots+\alpha_{n}|x_{n}-s_{n}|^{k}\right)^{m}dx, $$ where $k\in(0,1]$ at $m\in(0,1)\cup(1,+\infty)$ and $k\in(0,+\infty)$ at $m=1$; $\alpha_{j}(j=\overline{1,n})\in(0,+\infty)$—arbitrary real numbers, $s_{1},s_{2},\ldots,s_{n}$—coordinates of the minimum point of the function $$ \begin{aligned} I(y)=\int\limits_{\Omega} \left(\alpha_{1}|x_{1}-y_{1}|^{k}+\alpha_{2}|x_{2}-y_{2}|^{k}\,+\cdots\right.\\ \left. +\cdots\,+\alpha_{n}|x_{n}-y_{n}|^{k}\right)^{m}dx, \ dx=dx_{1}dx_{2}\cdots dx_{n} \end{aligned} $$ of the variables $y=(y_{1},y_{2},\ldots,y_{n})\in \mathbb{R}^{n}$, where $x_{1},x_{2},\ldots,x_{n}$—Cartesian coordinates of the point $x\in\Omega$. The main result of this paper is the following Theorem. Let $\Omega_{0}, \Omega_{1}$ be a bounded domains in $\mathbb{R}^{n}$, that can be represented as the the union of a finite number of convex domains. Then the functional $I(k;m;\Omega)^{1/(km+n)}$ concave: $$ I(k;m;\Omega_{t})^{1/(km+n)}\geq(1-t)I(k;m;\Omega_{0})^{1/(km+n)}+tI(k;m;\Omega_{1})^{1/(km+n)}, $$ where $\Omega_{t}=\{(1-t)z_{0}+tz_{1} \ | \ z_{0}\in\Omega_{0}, z_{1}\in\Omega_{1}\}$, $0\leq t\leq 1$, $k\in(0,1]$ at $m\in(0,1)\cup(1,+\infty)$ and $k\in(0,+\infty)$ at $m=1$.
Keywords: Brunn–Minkowski inequality, Prékopa–Leindler inequality, concave function, convex body, power moments.
@article{VVGUM_2016_4_a7,
     author = {B. S. Timergaliev},
     title = {Brunn--Minkowski type inequality for generalized power moments in the form of {Hadwiger}},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {92--107},
     publisher = {mathdoc},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2016_4_a7/}
}
TY  - JOUR
AU  - B. S. Timergaliev
TI  - Brunn--Minkowski type inequality for generalized power moments in the form of Hadwiger
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2016
SP  - 92
EP  - 107
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2016_4_a7/
LA  - ru
ID  - VVGUM_2016_4_a7
ER  - 
%0 Journal Article
%A B. S. Timergaliev
%T Brunn--Minkowski type inequality for generalized power moments in the form of Hadwiger
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2016
%P 92-107
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2016_4_a7/
%G ru
%F VVGUM_2016_4_a7
B. S. Timergaliev. Brunn--Minkowski type inequality for generalized power moments in the form of Hadwiger. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 4 (2016), pp. 92-107. http://geodesic.mathdoc.fr/item/VVGUM_2016_4_a7/

[1] F.\;G. Avkhadiev, B.\;S. Timergaliev, “Brunn–Minkowski Type Inequality for Conformal and Euclidean Moments of Domains”, Russian Mathematics, 2014, no. 5, 64–67 | Zbl

[2] F.\;G. Avkhadiev, “Solution of the Generalized Saint-Venant Problem”, Sbornik: Mathematics, 1998, no. 12, 3–12 | DOI | Zbl

[3] B.\;S. Timergaliev, “Brunn–Minkowski Type Inequality in Hadwiger's Form for Power Moments”, Uchen. zap. Kazan. un-ta, 2016, no. 1, 90–106 | MR

[4] F. Barthe, “The Brunn–Minkowski theorem and related geometric and functional inequalities”, Proceedings of the International Congress of Mathematicians, v. 2, 2006, 1529–1546 | MR | Zbl

[5] C. Borell, “Diffusion equations and geometric inequalities”, Potential Anal., 12 (2000), 49–71 | DOI | MR | Zbl

[6] H.\;J. Brascamp, E.\;H. Lieb, “On Extensions of the Brunn–Minkowski and Prékopa–Leindler Theorems, Including Inequalities for Log concave Functions, and with an Application to the Diffusion Equation”, Journal of Functional Analysis, 22 (1976), 366–389 | DOI | MR | Zbl

[7] A. Figalli, F. Maggi, A. Pratelli, “A refined Brunn–Minkowski inequality for convex sets”, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 26 (2009), 2511–2519 | DOI | MR | Zbl

[8] R.\;J. Gardner, A. Zvavitch, “Gaussian Brunn–Minkowski inequalities”, Trans. Amer. Math. Soc., 362:10 (2010), 5333–5353 | DOI | MR | Zbl

[9] R.\;J. Gardner, “The Brunn–Minkowski inequality”, Bulletin of the American Mathematical Society, 39 (2002), 355–405 | DOI | MR | Zbl

[10] H. Hadwiger, D. Ohmann, “Brunn–Minkowskischer Satz und Isoperimetrie”, Mathematische Zeitschrift, 66 (1956), 1–8 | DOI | MR | Zbl

[11] H. Hadwiger, “Konkave eikerperfunktionale und hoher tragheitsmomente”, Comment Math. Helv., 30 (1956), 285–296 | DOI | MR | Zbl

[12] G. Keady, “On a Brunn–Minkowski theorem for a geometric domain functional considered by Avhadiev”, Journal of Inequalities in Pure and Applied Mathematics, 8 (2007), 1–10 | MR

[13] L. Liendler, “On a certain converse of Hölder's inequality II”, Acta Sci. Math., 33 (1972), 217–223 | MR

[14] L.\;A. Lusternik, “Die Brunn–Minkowskische Ungleichung fur beliebige messbare Mengen”, Comptes Rendus de l'Académie des Sciences. Series I, Mathematics, 8 (1935), 55–58

[15] S. Lv, “Dual Brunn–Minkowski inequality for volume differences”, Geom. Dedicata, 145 (2010), 169–180 | DOI | MR | Zbl

[16] A. Prékopa, “Logariphmic concave measures with application to stochastic programming”, Acta Sci. Math., 32 (1971), 301–315 | MR