Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2016_4_a6, author = {A. V. Svetlov}, title = {On discreteness of spectrum of {Schr\"odinger} operator with bounded potential}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {84--91}, publisher = {mathdoc}, number = {4}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2016_4_a6/} }
TY - JOUR AU - A. V. Svetlov TI - On discreteness of spectrum of Schr\"odinger operator with bounded potential JO - Matematičeskaâ fizika i kompʹûternoe modelirovanie PY - 2016 SP - 84 EP - 91 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VVGUM_2016_4_a6/ LA - ru ID - VVGUM_2016_4_a6 ER -
A. V. Svetlov. On discreteness of spectrum of Schr\"odinger operator with bounded potential. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 4 (2016), pp. 84-91. http://geodesic.mathdoc.fr/item/VVGUM_2016_4_a6/
[1] I.\;M. Glazman, Direct Methods of Qualitative Spectral Analysis of Singular Differential Operators, Fizmatgiz Publ., M., 1963, 339 pp. | MR
[2] S.\;A. Korolkov, A.\;V. Svetlov, “Boundary Value Problems for Stationary Schrödinger Equation on Unbounded Domains of Riemannian Manifolds”, Nauka i obrazovanie v sovremennoy konkurentnoy srede, materialy Mezhdunar. nauch.-prakt. konf., in 3 parts, v. II, RIO ITsIPT Publ., Ufa, 2014, 215–221
[3] A.\;M. Molchanov, “On the Spectrum Discreteness Conditions for Self-Adjoint Differential Equations of the Second Order”, Tr. Mosk. mat. o-va, 2, 1953, 169–199 | Zbl
[4] M. Reed, B. Simon, Methods of Modern Mathematical Physics, v. 1, Mir Publ., M., 1977, 360 pp. | MR
[5] A.\;V. Svetlov, “On Discreteness of the Schrödinger Operator Spectrum on Quasi-Model Manifolds”, Sovremennye problemy teorii funktsiy i ikh prilozheniya, materialy 17-y Mezhdunar. Sarat. zim. shk., Nauchnaya kniga Publ., Saratov, 2016, 248–250
[6] A.\;V. Svetlov, “O spektre operatora Shredingera na mnogoobraziyakh spetsialnogo vida”, Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya: Matematika. Mekhanika. Informatika, 14:4(2) (2014), 584–589 | Zbl
[7] A.\;V. Svetlov, “Spektr operatora Shredingera na skreschennykh proizvedeniyakh”, Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Matematika. Fizika, 2002, no. 7, 12–19
[8] A. Baider, “Noncompact Riemannian manifolds with discrete spectra”, J. Diff. Geom., 14 (1979), 41–57 | DOI | MR | Zbl
[9] R. Brooks, “A relation between growth and the spectrum of the Laplacian”, Math. Z., 178 (1981), 501–508 | DOI | MR | Zbl
[10] A.A. Grigor'yan, “Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds”, Bull. Amer. Math. Soc., 36 (1999), 135–249 | DOI | MR | Zbl
[11] M. Harmer, “Discreteness of the spectrum of the Laplacian and stochastic incompleteness”, Journal of Geometric Analysis, 19:2 (2009), 358–372 | DOI | MR | Zbl
[12] V. Kondratev, M. Shubin, “Discreteness of spectrum for the Schrödinger operators on manifolds of bounded geometry”, Operator theory: Advances and Applications, 110, 1999, 185–226 | DOI | MR | Zbl
[13] E. Korolkova, S. Korolkov, A. Svetlov, “On solvability of boundary value problems for solutions of the stationary Schrödinger equation on unbounded domains of Riemannian manifolds”, International Journal of Pure and Applied Mathematics, 97:2 (2014), 231–240 | DOI
[14] A.\;G. Losev, E.\;A. Mazepa, “Bounded solutions of the Schrödinger equation on Riemannian products”, St. Petersburg Math. J., 13:1 (2001), 57–73 | MR
[15] A.\;G. Losev, “On some Liouville theorems on noncompact Riemannian manifolds”, Siberian Math. J., 39:1 (1998), 74–80 | DOI | MR | Zbl
[16] M. Pinsky, “The spectrum of the Laplacian on a manifold of negative curvature I”, J. Diff. Geom., 13 (1978), 87–91 | DOI | MR | Zbl
[17] Z. Shen, “The spectrum of Schrödinger operators with positive potentials in Riemannian manifolds”, Proc. of Amer. Math. Soc., 131:11 (2003), 3447–3456 | DOI | MR | Zbl
[18] M. Schechter, Spectra of partial differential operators, North-Holland, Amsterdam, 1971, 295 pp. | MR | Zbl
[19] A.\;V. Svetlov, “A discreteness criterion for the spectrum of the Laplace–Beltrami operator on quasimodel manifolds”, Siberian Mathematical Journal, 43:6 (2002), 1103–1111 | DOI | MR | Zbl
[20] A. Svetlov, “Discreteness criterion for the spectrum of the Schrödinger operator on weighted quasimodel manifolds”, International Journal of Pure and Applied Mathematics, 89:3 (2013), 393–400 | DOI | Zbl