On discreteness of spectrum of Schr\"odinger operator with bounded potential
Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 4 (2016), pp. 84-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let's consider a complete noncompact Riemannian manifold $M$ without boundary which is representable as $K\cup D$, where $K$ is a compact set and $D$ is isometric to the product $\mathbf{ R_0} \times \mathrm{S}_1\times \mathrm{S}_2\times\cdots\times \mathrm{S}_k$ (where $\mathbf{ R_0}=(r_0,+\infty)$, and $\mathrm{S}_i$ are compact Riemannian manifolds without boundary) with metric $$ds^2=dr^2+q_1^2(r)d\theta_1^2+\cdots+q_k^2(r)d\theta_k^2,$$ where $d\theta_i^2$ is the metric on $\mathbb{S}_i$ and $q_i(r)$ is a smooth positive function on $\mathrm{R}_0$. We assume $\dim\mathbb{S}_i=n_i$ and denote $s(r)=q_1^{n_1}(r)\cdots q_k^{n_k}(r)$. The manifold $M$ is called a manifold with end. Since its end $D$ is a simple warped product, $M$ is the simplest case of a quasimodel manifold. On the manifold $M$ we study the Laplace–Beltrami operator $$-\Delta=-\mathrm{div}\nabla$$ and the Schrödinger operator $$-\Delta=-\mathrm{div}\nabla+c(r,\theta).$$ We denote $$F(r)=\left(\frac{s'(r)}{2s(r)}\right)' +\left(\frac{s'(r)}{2s(r)}\right)^2.$$ Theorem 1. Let's $c(r,\theta)\geq 0$. The spectrum of the Schrödinger operator $L$ on the manifold $M$ is discrete if one of the following conditions is satisfied: $$ V(D)\infty\quad \text{ and }\quad \lim\limits_{r\to \infty}\frac{V(D\setminus B(r))}{\mathrm{cap }(B(1),B(r))}=0,$$ or $$\mathrm{cap }\, B(1)>0\quad \text{ and }\quad\lim\limits_{r\to \infty}\frac{V(B(r))}{\mathrm{cap }\, B(r)}=0.$$ We can note that the conditions of the theorem 1 are not just sufficient, but necessary for discreteness of the Laplacian spectrum. Theorem 2. If there is a function $\tilde{c}(r)$ on manifold $M$ such that $c(r,\theta)\geq \tilde{c}(r)$ and $\tilde{c}(r)+F(r)>-C \ (C=\mathrm{const}>0)$, then the spectrum of the Schrödinger operator $L$ on the manifold $M$ is discrete if $$\forall \omega>0\quad\lim_{r\to\infty}\int\limits_r^{r+\omega}\left(\tilde{c}(r)+F(r)\right)dr=+\infty.$$
Keywords: spectrum discreteness, Schrödinger operator, Riemannian manifolds, quasimodel manifolds, warped products.
@article{VVGUM_2016_4_a6,
     author = {A. V. Svetlov},
     title = {On discreteness of spectrum of {Schr\"odinger} operator with bounded potential},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {84--91},
     publisher = {mathdoc},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2016_4_a6/}
}
TY  - JOUR
AU  - A. V. Svetlov
TI  - On discreteness of spectrum of Schr\"odinger operator with bounded potential
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2016
SP  - 84
EP  - 91
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2016_4_a6/
LA  - ru
ID  - VVGUM_2016_4_a6
ER  - 
%0 Journal Article
%A A. V. Svetlov
%T On discreteness of spectrum of Schr\"odinger operator with bounded potential
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2016
%P 84-91
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2016_4_a6/
%G ru
%F VVGUM_2016_4_a6
A. V. Svetlov. On discreteness of spectrum of Schr\"odinger operator with bounded potential. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 4 (2016), pp. 84-91. http://geodesic.mathdoc.fr/item/VVGUM_2016_4_a6/

[1] I.\;M. Glazman, Direct Methods of Qualitative Spectral Analysis of Singular Differential Operators, Fizmatgiz Publ., M., 1963, 339 pp. | MR

[2] S.\;A. Korolkov, A.\;V. Svetlov, “Boundary Value Problems for Stationary Schrödinger Equation on Unbounded Domains of Riemannian Manifolds”, Nauka i obrazovanie v sovremennoy konkurentnoy srede, materialy Mezhdunar. nauch.-prakt. konf., in 3 parts, v. II, RIO ITsIPT Publ., Ufa, 2014, 215–221

[3] A.\;M. Molchanov, “On the Spectrum Discreteness Conditions for Self-Adjoint Differential Equations of the Second Order”, Tr. Mosk. mat. o-va, 2, 1953, 169–199 | Zbl

[4] M. Reed, B. Simon, Methods of Modern Mathematical Physics, v. 1, Mir Publ., M., 1977, 360 pp. | MR

[5] A.\;V. Svetlov, “On Discreteness of the Schrödinger Operator Spectrum on Quasi-Model Manifolds”, Sovremennye problemy teorii funktsiy i ikh prilozheniya, materialy 17-y Mezhdunar. Sarat. zim. shk., Nauchnaya kniga Publ., Saratov, 2016, 248–250

[6] A.\;V. Svetlov, “O spektre operatora Shredingera na mnogoobraziyakh spetsialnogo vida”, Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya: Matematika. Mekhanika. Informatika, 14:4(2) (2014), 584–589 | Zbl

[7] A.\;V. Svetlov, “Spektr operatora Shredingera na skreschennykh proizvedeniyakh”, Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Matematika. Fizika, 2002, no. 7, 12–19

[8] A. Baider, “Noncompact Riemannian manifolds with discrete spectra”, J. Diff. Geom., 14 (1979), 41–57 | DOI | MR | Zbl

[9] R. Brooks, “A relation between growth and the spectrum of the Laplacian”, Math. Z., 178 (1981), 501–508 | DOI | MR | Zbl

[10] A.A. Grigor'yan, “Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds”, Bull. Amer. Math. Soc., 36 (1999), 135–249 | DOI | MR | Zbl

[11] M. Harmer, “Discreteness of the spectrum of the Laplacian and stochastic incompleteness”, Journal of Geometric Analysis, 19:2 (2009), 358–372 | DOI | MR | Zbl

[12] V. Kondratev, M. Shubin, “Discreteness of spectrum for the Schrödinger operators on manifolds of bounded geometry”, Operator theory: Advances and Applications, 110, 1999, 185–226 | DOI | MR | Zbl

[13] E. Korolkova, S. Korolkov, A. Svetlov, “On solvability of boundary value problems for solutions of the stationary Schrödinger equation on unbounded domains of Riemannian manifolds”, International Journal of Pure and Applied Mathematics, 97:2 (2014), 231–240 | DOI

[14] A.\;G. Losev, E.\;A. Mazepa, “Bounded solutions of the Schrödinger equation on Riemannian products”, St. Petersburg Math. J., 13:1 (2001), 57–73 | MR

[15] A.\;G. Losev, “On some Liouville theorems on noncompact Riemannian manifolds”, Siberian Math. J., 39:1 (1998), 74–80 | DOI | MR | Zbl

[16] M. Pinsky, “The spectrum of the Laplacian on a manifold of negative curvature I”, J. Diff. Geom., 13 (1978), 87–91 | DOI | MR | Zbl

[17] Z. Shen, “The spectrum of Schrödinger operators with positive potentials in Riemannian manifolds”, Proc. of Amer. Math. Soc., 131:11 (2003), 3447–3456 | DOI | MR | Zbl

[18] M. Schechter, Spectra of partial differential operators, North-Holland, Amsterdam, 1971, 295 pp. | MR | Zbl

[19] A.\;V. Svetlov, “A discreteness criterion for the spectrum of the Laplace–Beltrami operator on quasimodel manifolds”, Siberian Mathematical Journal, 43:6 (2002), 1103–1111 | DOI | MR | Zbl

[20] A. Svetlov, “Discreteness criterion for the spectrum of the Schrödinger operator on weighted quasimodel manifolds”, International Journal of Pure and Applied Mathematics, 89:3 (2013), 393–400 | DOI | Zbl