Adaptation model for operating core of organization
Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 4 (2016), pp. 44-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article describes a model to adapt the organization of the operational core in an unstable external environment, the results of numerical solution of dynamic optimization of the operational structure of core objectives of the organization in the absence of the uncertainty of dynamic programming method in the conditions of uncertainty simulation method for different values of a parameter which characterizes the uncertainty. The paper assumes that the structure of the organization operating the core consists of a base (unchanged) and a variable supporting structures. The basic structure can be represented by a graph, whose vertices correspond to elements of the technology with fixed factor proportions. Changes in the internal and external environment of the organization lead to deviations of factor proportions of their most effective potential values at each vertex of the graph technology. Mitigation or elimination of these deviations is the aim of supporting structures, potentially embedded between all pairs of vertices of the base of the graph. Optimal control of the last property gives adaptability throughout the structure of the operational core. In this paper, the basic technology consists of a single vertex. The production function of the operational core is represented as a superposition of Leontief production functions corresponding to each of its structural elements. The analytical assessment of the values of the production function of the operational core of the organizational system for a certain field of technological coefficient values.
Mots-clés : adaptation
Keywords: uncertainty, organizational system, operating core, optimization of the structure, production function.
@article{VVGUM_2016_4_a3,
     author = {A. A. Voronin and M. Kharitonov},
     title = {Adaptation model for operating core of organization},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {44--65},
     publisher = {mathdoc},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2016_4_a3/}
}
TY  - JOUR
AU  - A. A. Voronin
AU  - M. Kharitonov
TI  - Adaptation model for operating core of organization
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2016
SP  - 44
EP  - 65
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2016_4_a3/
LA  - ru
ID  - VVGUM_2016_4_a3
ER  - 
%0 Journal Article
%A A. A. Voronin
%A M. Kharitonov
%T Adaptation model for operating core of organization
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2016
%P 44-65
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2016_4_a3/
%G ru
%F VVGUM_2016_4_a3
A. A. Voronin; M. Kharitonov. Adaptation model for operating core of organization. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 4 (2016), pp. 44-65. http://geodesic.mathdoc.fr/item/VVGUM_2016_4_a3/

[1] R. Aris, Discrete Dynamic Programming, Mir Publ., M., 1969, 173 pp. | MR

[2] R. Bellman, Dynamic Programming, Izdvo inostr. lit. Publ., M., 1960, 400 pp. | MR

[3] A.\;A. Voronin, S.\;P. Mishin, “Algorithms to Construct Suboptimal Organization Hierarchies”, Automation and Remote Control, 2002, no. 5, 120–132 | Zbl

[4] A.\;A. Voronin, M.\;A. Kharitonov, “Constrained Dynamic Optimization Model of Organization’s Operating Core”, Science Journal of Volgograd State University. Mathematics. Physics, 2012, no. 2 (17), 41–59 | MR

[5] A.\;A. Voronin, S.\;P. Mishin, “Model of Optimal Control of Structural Changes of the Organizational System”, Automation and Remote Control, 2002, no. 8, 136–150 | Zbl

[6] A.\;A. Voronin, M.\;A. Kharitonov, “The Operating Core of an Organization: A Constrained Optimization Model”, Upravlenie bolshimi sistemami, 39, 2012, 165–183

[7] A.\;A. Voronin, S.\;P. Mishin, Optimal Hierarchical Structures, IPU RAN Publ., M., 2003, 214 pp.

[8] M.\;V. Gubko, “Algorithms to Construct Suboptimal Organization Hierarchies”, Automation and Remote Control, 2009, no. 1, 162–179 | MR | Zbl

[9] M.\;V. Gubko, “Homogeneous Functions of Managers’ Costs, Optimal Organizational Structure”, Upravlenie bolshimi sistemami, 15, 2006, 103–116

[10] M.\;V. Gubko, “The Search for Optimal Organizational Hierarchies with Homogeneous Manager Cost Functions”, Automation and Remote Control, 2008, no. 1, 97–113 | MR | Zbl

[11] G.\;B. Kleyner, Production Functions. Theory, Methods and Application, Finansy i statistika Publ., M., 1986, 239 pp. | MR

[12] A.\;A. Voronin, M.\;V. Gubko, D.\;A. Novikov, S.\;P. Mishin, Mathematical Models of Organizations, URSS Publ., M., 2008, 360 pp.

[13] S.\;P. Mishin, Optimal Management Hierarchy in Economic Systems, PMSOFT Publ., M., 2004, 205 pp.

[14] D.\;A. Novikov, Institutional Control of Organizational Systems, IPU RAN Publ., M., 2003, 68 pp.

[15] D.\;A. Novikov, Mechanisms of Functioning of Multilevel Organizational Systems, Fond «Problemy upravleniya» Publ., M., 1999, 150 pp.

[16] D.\;A. Novikov, Network Structures and Organizational Systems, IPU RAN Publ., M., 2003, 102 pp.

[17] D.\;A. Novikov, The Control Theory of Organizational Systems, Fizmatlit Publ., M., 2012, 604 pp.

[18] V.\;F. Krotov, B.\;A. Lagosha, S.\;M. Lobanov, N.\;I. Danilina, S.\;I. Sergeev, Fundamentals of the Theory of Optimal Control, Vyssh. shk. Publ., M., 1989, 430 pp. | MR

[19] P.\;V. Rozhikhin, “The Search for the Optimal Trajectory Organization Graph Transformations”, Upravlenie bolshimi sistemami, 6, 2004, 105–116

[20] P.\;V. Rozhikhin, “Trajectories Transformation of the Structure of Organizational Systems”, Upravlenie bolshimi sistemami, 9, 2004, 190–200

[21] P.\;V. Rozhikhin, “Assessment of Power of the State Space of the Hierarchical Structure”, Upravlenie bolshimi sistemami, 11, 2005, 75–80

[22] I. Adizes, Mastering Change: The Power of Mutual Trust and Respect in Personal Life, Family Life, Business and Society, Adizes Institute Publications, Los Angeles, 1992, 260 pp.

[23] W.\;P. Barnett, G.\;R. Carroll, “Modeling Internal Organizational Change”, Annual Review of Sociology, 21 (1995), 217–236 | DOI

[24] R.\;R. Blake, J.\;S. Mouton, Building a dynamic corporation through grid organization development, Addison–Wesley Publishing Company, Boston, 1969, 120 pp.

[25] J. Champy, Reengineering Management: The Mandate for New Leadership, Harper Collins Business, L., 1995, 240 pp.

[26] R.\;M. Grant, S. Rami, R. Krishnan, “TQM's Challenge to Management Theory and Practice”, Sloan management review, 35 (1994), 25–36

[27] S. Kauffman, The Origins of Order: Self-organization and Selection in Evolution, Oxford University Press, N. Y., 1993, 709 pp.

[28] M. Kharitonov, A. Svetlov, A. Voronin, “Operating core of an organizational system: optimal control of support structure”, International Journal of Pure and Applied Mathematics, 107:4 (2016), 889–901 | DOI

[29] G. Mincberg, Structure in Fives: Designing Effective Organization, Prentice-Hall, N. J., 1983, 312 pp.

[30] Q. Tran, Y. Tian, “Organizational Structure: Influencing Factors and Impact on a Firm”, American Journal of Industrial and Business Management, 2013, no. 3, 229–236 | DOI

[31] P. Watzlawick, J. Weakland, R. Fisch, Change: Principles of Problem Formation and Problem Resolution, Norton Books, N. Y., 1974, 172 p. pp.

[32] K.\;E. Weick, R.\;E. Quinn, “Organizational Change and Development”, Annual Review of Psychology, 50 (1999), 361–386 | DOI