Resonance set of a polynomial and problem of formal stability
Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 4 (2016), pp. 6-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f_n(x)$ be a monic polynomial of degree $n$ with real coefficients \begin{equation*} f_n(x)\stackrel{def}{=} x^n+a_1x^{n-1}+a_2x^{n-2}+\dotsb+a_n. \end{equation*} The space $\Pi\equiv\mathbb R^n$ of its coefficients $a_1,\dotsc a_n$ is called the coefficient space of $f_n(x)$. A pair of roots $t_i$, $t_j$, $i,j=1,\dotsc,n$, $i\neq j$, of the polynomial $f_n(x)$ is called $p:q$-commensurable if $t_i:t_j=p:q$. Resonance set $\mathcal R_{p:q}(f_n)$ of the polynomial $f_n(x)$ is called the set of all points of $\Pi$ at which $f_n(x)$ has at least a pair of $p:q$-commensurable roots, i.e. \begin{equation*} \mathcal R_{p:q}(f_n)=\{P\in\Pi: \exists\, i,j=1,\dotsc,n, t_i:t_j=p:q\}. \end{equation*} The chain $\mathrm{Ch}_{p:q}^{(k)}(t_i)$ of $p:q$-commensurable roots of length $k$ is called the finite part of geometric progression with common ratio $p/q$ and scale factor $t_i$, each member of which is a root of the polynomial $f_n(x)$. The value $t_i$ is called the generating root of the chain. Any partition $\lambda$ of degree $n$ of $f_n(x)$ defines a certain structure of its $p:q$-commensurable roots and it corresponds to some algebraic variety $\mathcal V_l^i$, $i=1,\dotsc,p_l(n)$ of dimension $l$ in the coefficient space $\Pi$. The number of such varieties of dimension $l$ is equal to $p_l(n)$ and total number of all varieties consisting the resonance set $\mathcal R_{p:q}(f_n)$ is equal to $p(n)-1$. Algorithm for parametric representation of any variety $\mathcal V_l$ from the resonance set $\mathcal R_{p:q}(f_n)$ is based on the following Theorem. Let $\mathcal V_l$, $\dim\mathcal V_l=l$, be a variety on which $f_n(x)$ has $l$ different chains roots and the chain $\mathrm{Ch}_{p:q}^{(m)}(t_1)$ has length $m>1$. Let $\mathbf r_l(t_1,t_2,\dotsc,t_l)$ is a parametrization of variety $\mathcal V_l$. Therefore the following formula \begin{equation*} \mathbf r_l(t_1,\dotsc,t_l,v)=\mathbf r_l(t_1,\dotsc,t_l)+\frac{p(v-p^{m-1}t_1)}{t_1(p^m-q^m)}\left[\mathbf r_l(t_1,\dotsc,t_l)-\mathbf r_l((q/p)t_1,\dotsc,t_l)\right] \end{equation*} gives parametrization of the part of variety $\mathcal V_{l+1}$, on which there exists $\mathrm{Ch}_{p:q}^{(m-1)}(t_1)$, simple root $v$ and other chains of roots are the same as on the initial variety $\mathcal V_l$. From the geometrical point of view the Theorem means that part of variety $\mathcal V_{l+1}$ is formed as ruled surface of dimension $l+1$ by the secant lines, which cross its directrix $\mathcal V_l$ at two points defined by such values of parameters $t_1^1$ and $t_1^2$ that $t_1^1:t_1^2=q:p$. If $f_n(x)$ has on the variety $\mathcal V_{l+1}$ pairs of complex-conjugate roots it is necessary to make continuation of obtained parametrization $\mathbf r_l(t_1,\dotsc,t_l,v)$. Resonance set of a cubic polynomial $f_3(x)$ can be used for solving the problem of formal stability of a stationary point (SP) of a Hamiltonian system with three degrees of freedom. Let Hamiltonian function $H(\mathbf z)$ expand in SP $H(\mathbf z)=\sum_{i=2}^\infty H_i(\mathbf z)$, where $\mathbf z=(\mathbf q,\mathbf p)$, $\mathbf q$ and $\mathbf p$ — are coordinates and momenta, $H_i(\mathbf z)$ — are homogeneous functions of degree $i$. Characteristic polynomial $f(\lambda)$ of the linearized system $\dot{\mathbf z}=JA\mathbf z$, $A=\mathrm{Hess} H_2$, can be considered as a monic cubic polynomial. Resonance sets $\mathcal R_{p:q}(f_n)$ for $p=1,4,9,16$, $q=1$, give the boundaries of subdomains in $\Pi$, where Bruno's Theorem of formal stability [9] can be applied.
Keywords: elimination theory, subresultant, computer algebra, formal stability of a stationary point, resonance set.
@article{VVGUM_2016_4_a1,
     author = {A. B. Batkhin},
     title = {Resonance set of a polynomial and problem of formal stability},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {6--24},
     publisher = {mathdoc},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2016_4_a1/}
}
TY  - JOUR
AU  - A. B. Batkhin
TI  - Resonance set of a polynomial and problem of formal stability
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2016
SP  - 6
EP  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2016_4_a1/
LA  - ru
ID  - VVGUM_2016_4_a1
ER  - 
%0 Journal Article
%A A. B. Batkhin
%T Resonance set of a polynomial and problem of formal stability
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2016
%P 6-24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2016_4_a1/
%G ru
%F VVGUM_2016_4_a1
A. B. Batkhin. Resonance set of a polynomial and problem of formal stability. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 4 (2016), pp. 6-24. http://geodesic.mathdoc.fr/item/VVGUM_2016_4_a1/

[1] A.\;B. Batkhin, “Segregation of Stability Domains of the Hamilton Nonlinear System”, Automation and Remote Control, 2013, no. 8, 47–64 | MR | Zbl

[2] A.\;B. Batkhin, A.\;D. Bruno, V.\;P. Varin, “Stability Sets of Multiparameter Hamiltonian Systems”, Journal of Applied Mathematics and Mechanics, 76:1 (2012), 80–133 | MR | Zbl

[3] A.\;B. Batkhin, “Non-Linear Stability of the Hamiltonian System on Linear Approximation”, Preprinty IPM im. M.\;V. Keldysha, 2012, 33, 24 pp., Title from screen http://www.keldysh.ru/papers/2012/prep2012_33.pdf | Zbl

[4] A.\;B. Batkhin, “Parametrization of the Discriminant Set of a Real Polynomial”, Preprinty IPM im. M.\;V. Keldysha, 2015, 76, 36 pp.

[5] A.\;B. Batkhin, “Parameterization of the Discriminant Set of a Polynomial”, Programming and Computer Software, 42:2 (2016), 8–21 | DOI | MR

[6] A.\;B. Batkhin, “Structure of Discriminant Set of Real Polynomial”, Chebyshevskiy sb., 16:2 (2015), 23–34 | MR

[7] A.\;B. Batkhin, “Structure of the Resonance Set of a Real Polynomial”, Preprinty IPM im. M.\;V. Keldysha, 2016, 29, 23 pp. | DOI

[8] A.\;D. Bruno, A.\;G. Petrov, “On Computation of the Hamiltonian Normal Form”, Doklady akademii nauk, 410:4 (2006), 474–478 | MR

[9] A.\;D. Bruno, “Formal Stability of Hamiltonian Systems”, Mathematical Notes, 1:3 (1967), 325–330 | DOI | Zbl

[10] E. Jury, Inners and Stability of Dynamic Systems, Mir Publ., M., 1979, 304 pp.

[11] V.\;F. Zhuravlev, A.\;G. Petrov, M.\;M. Shunderyuk, Selected Problems of Hamiltonian Mechanics, LENAND Publ., M., 2015, 304 pp.

[12] E.\;A. Kalinina, A.\;Yu. Uteshev, Elimination Theory, Izd-vo NII khimii SPbGU Publ., SPb., 2002, 72 pp.

[13] I. Macdonald, Symmetric Functions and Hall Polynomials, Mir Publ., M., 1985, 222 pp. | MR

[14] A.\;P. Markeev, Libration Points in Celestial Mechanics and Cosmodynamics, Nauka Publ., M., 1978, 312 pp.

[15] V.\;V. Prasolov, Polynomials, MTsNMO Publ., M., 2014, 336 pp.

[16] G. Andrews, The Theory of Partitions, Nauka Publ., M., 1982, 256 pp. | MR

[17] S. Basu, R. Pollack, M.-F. Roy, Algorithms in Real Algebraic Geometry, Springer-Verlag, Berlin, Heidelberg, New York, 2006, 662 pp. | MR | Zbl

[18] M.\;P. Markakis, A.\;E. Perdiou, C.\;N. Douskos, “The photogravitational Hill problem with oblateness: equilibrium points and Lyapunov families”, Astrophys Space Sci., 315 (2008), 297–306 | DOI

[19] J. Moser, “New aspects in the theory of stability of Hamiltonian systems”, Comm. Pure Appl. Math., 11:1 (1958), 81–114 | DOI | MR | Zbl

[20] N.\;J.\;A. Sloane, The On-Line Encyclopedia of Integer Sequences, , Title from screen http://oeis.org