Modeling minimum triangulated surfaces: error estimation calculating the area of the design of facilities
Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 3 (2016), pp. 73-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider the functional given by the integral \begin{equation} I(u)=\int\limits_{\Omega}G(x,u,\nabla u)dx, \tag{1} \end{equation} defined for functions $u\in C^1(\Omega)\cap C(\overline{\Omega})$. Note that the Euler–Lagrange equation of the variational problem for this functional has the form \begin{equation} Q[u]\equiv \sum_{i=1}^n\left(G'_{\xi_i}(x,u,\nabla u)\right)'_{x_i}-G'_u(x,u,\nabla u)=0. \tag{2} \end{equation} Where $G(x,u,\nabla u)=\sqrt{1+|\nabla u|^2}$. Equation (2) is the equation of a minimal surface. Another example is the Poisson equation $\Delta u=f(x)$, which corresponds to the function $G(x,u,\nabla u) = |\nabla u|^2+2f(x)u(x)$. Next, we examine the question of the degree of approximation of the functional (1) by piecewise quadratic functions. For such problems lead the convergence of variational methods for some boundary value problems. Note that the derivatives of a continuously differentiable function approach derived piecewise quadratic function with an error of the second order with respect to the diameter of the triangles of the triangulation. We obtain that the value of the integral (1) for functions in $ C ^ 2 $ is possible to bring a greater degree of accuracy. Note also that in [3; 8] estimates the error calculation of the surface triangulation, built on a rectangular grid.
Keywords: piecewise quadratic function, area of a surface, the approximation of functional, minimal surface.
Mots-clés : triangulation
@article{VVGUM_2016_3_a7,
     author = {A. A. Klyachin and A. G. Panch{\cyre}nko},
     title = {Modeling minimum triangulated surfaces: error estimation calculating the area of the design of facilities},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {73--83},
     publisher = {mathdoc},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2016_3_a7/}
}
TY  - JOUR
AU  - A. A. Klyachin
AU  - A. G. Panchеnko
TI  - Modeling minimum triangulated surfaces: error estimation calculating the area of the design of facilities
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2016
SP  - 73
EP  - 83
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2016_3_a7/
LA  - ru
ID  - VVGUM_2016_3_a7
ER  - 
%0 Journal Article
%A A. A. Klyachin
%A A. G. Panchеnko
%T Modeling minimum triangulated surfaces: error estimation calculating the area of the design of facilities
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2016
%P 73-83
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2016_3_a7/
%G ru
%F VVGUM_2016_3_a7
A. A. Klyachin; A. G. Panchеnko. Modeling minimum triangulated surfaces: error estimation calculating the area of the design of facilities. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 3 (2016), pp. 73-83. http://geodesic.mathdoc.fr/item/VVGUM_2016_3_a7/

[1] A.\;A. Abdyushev, I.\;Kh. Miftakhutdinov, P.\;P. Osipov, “Design of Shallow Shells Minimal Surface”, Izvestiya KazGASU, Stroitelnye konstruktsii, zdaniya i sooruzheniya, 2009, no. 2 (12), 86–92

[2] N.\;S. Bakhvalov, Numerical Methods, Binom Publ., M., 2003, 632 pp.

[3] M.\;A. Gatsunaev, “Approximate Calculation of the Surface Area”, Materialy Nauchnoy sessii (g. Volgograd, 26–30 apr. 2010 g.), Matematika i informatsionnye tekhnologii, 6, 2010, 66–70

[4] A.\;A. Klyachin, M.\;A. Gatsunaev, “On Uniform Convergence of Piecewise Linear Solutions of the Minimal Surface Equation”, Ufa Mathematical Journal, 6:3 (2014), 3–16

[5] A.\;A. Klyachin, “$C^1$-Approximation of the Level Surfaces of Functions Defined on Irregular Grids”, Science Journal of Volgograd State University. Mathematics. Physics, 2015, no. 1 (26), 6–12

[6] V.\;E. Mikhaylenko, S.\;N. Kovalev, Designing Forms of Modern Architectural Structures, Budivelnik Publ., Kiev, 1978, 138 pp.

[7] E.\;V. Popov, “Geometric Modeling of Tissue Awning Structures By Method Spanned Nets”, Proc. GraphiCon'2001, 2001, 140–144

[8] A.\;F. Rasmussen, M.\;S. Floater, “Extrapolation methods for approximating arc length and surface area”, Numerical Algorithms, 44:3 (2007), 235–248