Stochactic model of charge separation in photo excited molecular triad
Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 3 (2016), pp. 63-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

Within framework of the stationary stochastic model the dynamics of ultrafast photoinduced electron transfer reactions in the donor–acceptor triad are studied. The molecular triad $DA_1A_2$ contains a primary electron donor $D$ that transfers an electron to consistently to the nearest neighbor acceptor $A_1$ and acceptor $A_2$ in accordance with the scheme $DA_1A_2\stackrel{h\nu}{\longrightarrow}D^*A_1A_2\stackrel{I}{\longrightarrow}D^+A^-_1A_2\stackrel{II}{\longrightarrow}D^+A_1A^-_2$. This separation of charges is of paramount importance for the efficient functioning of the photosynthetic reaction centers containing an ordered array of secondary electron acceptors. The model accounts for the solvent reorganization and decay of intermediate $(D^+A^-_1A_2)$ and final products $(D^+A_1A^-_2)$ of the reaction. An analytical expression for the probability of the charge transfer to secondary acceptor of flowing parallel to the relaxation of polar solvent is received. Quantitative estimation of the influence of the decay reaction products on the charge separation probability is made. It is shown that the decay of the molecular triad final state $(D^+A_1A^-_2)$ increases charge separation probability $W_{CS}$. The most noticeable influence of the product decay time $\tau_{\nu 3}$ on $W_{CS}$ is seen in the Marcus normal region (up $30\%$), and in the Marcus inverted region $W_{CS}$ varies slightly with variation of the product decay time $\tau_{\nu 3}$. The mechanism of the effect is transparent enough. The final reaction state decay constrains reverse flow, which increases the direct charge transfer rate and therefore the probability of charge separation increases. Fast decay of the intermediate $(D^+A^-_1A_2)$ products of reaction blocks up charge transfer to the secondary acceptor.
Keywords: photoinduced reactions of charge transfer, intramolecular vibrational relaxation, molecular donor–acceptor triad, electron, molecular systems.
@article{VVGUM_2016_3_a6,
     author = {T. V. {\CYRM}ikhaylova and D. A. Roshchina and E. A. {\CYRM}ikhaylova and V. A. Mikhaylova},
     title = {Stochactic model of charge separation in photo excited molecular triad},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {63--72},
     publisher = {mathdoc},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2016_3_a6/}
}
TY  - JOUR
AU  - T. V. Мikhaylova
AU  - D. A. Roshchina
AU  - E. A. Мikhaylova
AU  - V. A. Mikhaylova
TI  - Stochactic model of charge separation in photo excited molecular triad
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2016
SP  - 63
EP  - 72
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2016_3_a6/
LA  - ru
ID  - VVGUM_2016_3_a6
ER  - 
%0 Journal Article
%A T. V. Мikhaylova
%A D. A. Roshchina
%A E. A. Мikhaylova
%A V. A. Mikhaylova
%T Stochactic model of charge separation in photo excited molecular triad
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2016
%P 63-72
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2016_3_a6/
%G ru
%F VVGUM_2016_3_a6
T. V. Мikhaylova; D. A. Roshchina; E. A. Мikhaylova; V. A. Mikhaylova. Stochactic model of charge separation in photo excited molecular triad. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 3 (2016), pp. 63-72. http://geodesic.mathdoc.fr/item/VVGUM_2016_3_a6/

[1] A.\;I. Ivanov, V.\;A. Mikhaylova, “The Influence of Product Decomposition on the Probability of Nonthermal Transitions in Charge Transfer Reactions”, Him. fizika, 27:9 (2008), 5–12

[2] A.\;I. Ivanov, V.\;A. Mikhaylova, “Kinetics of Fast Photochemical Reactions of Separation and Charge Recombination”, Uspekhi khimii, 79 (2010), 1139–1163

[3] A.\;I. Ivanov, V.\;A. Mikhaylova, S.\;V. Feskov, “Photoinduced Electron Transfer to the Paramagnetic Center”, Zhurn. fiz. himii, 71 (1997), 1500–1504

[4] E.\;A. Mikhaylova, V.\;A. Mikhaylova, “The Probability of Hot Charge Transfer to the Secondary Acceptor”, Fundamental and Applied Science Today, Proceedings of III International Scientific and Practical Conference, v. 2, Research and Publishing Center «Academic», North Charleston, SC, USA, 2014, 123–124

[5] S.\;V. Feskov, A.\;I. Ivanov, “Efficiency of Intramolecular Electron Transfer From the Second Excited State of the Donor in Molecular Triads D–A1–A2”, Zhurn. Fiz. khimii, 90:1 (2016), 97–104

[6] A.\;G. Yakovlev, V.\;A. Khuvalov, “Charge Separation in Photosynthetic Reaction Centers Under Femtosecond Excitation”, Biokhimiya, 66:2 (2001), 261–72

[7] S.\;V. Feskov, A.\;I. Ivanov, “Efficiency of Intramolecular Charge Separation from the Second Excited State: Suppression of the Hot Charge Recombination by Electron Transfer to the Secondary Acceptor”, J. Phys. Chem. A, 117 (2013), 11479–11489

[8] L. Hammarström, S. Hammes-Schiffer, “Artificial Photosynthesis and Solar Fuels”, Acc. Chem. Res., 42 (2009), 1859–1860

[9] N. Mataga, Y. Shibata, H. Chosrowjan, N. Yoshida, A. Osuka, “Internal Conversion and Vibronic Relaxation from Higher Excited Electronic State of Porphyrins: Femtosecond Fluorescence Dynamics Studies”, J. Phys. Chem. B, 104 (2000), 4001–4004

[10] V.\;N. Ionkin, A.\;I. Ivanov, “Numerical Simulations of Ultrafast Charge Separation Dynamics from Second Excited State of Directly Linked Zinc–Porphyrin–Imide Dyads and Ensuing Hot Charge Recombination into the First Excited State”, J. Phys. Chem. A, 113 (2009), 103–107

[11] A.\;I. Ivanov, V.\;V. Potovoi, “Theory of non-thermal electron transfer”, Chem. Phys., 247 (1999), 245–259

[12] S.\;A. Kovalenko, R. Schanz, H. Hennig, N.\;P. Ernsting, “Cooling dynamics of an optically excited molecular probe in solution from femtosecond broadband transient absorption spectroscopy”, J. Chem. Phys., 115 (2001), 3256–3273

[13] V.\;A. Mikhailova, A.\;I. Ivanov, “Effect of relaxation of intramolecular high-frequency vibrational mode on nonthermal electron transfer probability. Stochastic point-transition approach”, J. Phys. Chem. C, 111 (2007), 4445–4451

[14] M. Andersson, J. Davidsson, L. Hammarström, J. Korrpi-Tommola, T. Peltola, “Photoinduced Electron Transfer Reactions in a Porphyrin–Viologen Complex: Observation of $\mathrm{S_2}$ to $\mathrm{S_1}$ Relaxation and Electron Transfer from the $\mathrm{S_2}$ State”, J. Phys. Chem. B, 103 (1999), 3258–3262

[15] M.\;V. Rogozina, V.\;N. Ionkin, A.\;I. Ivanov, “Dynamics of Charge Separation from Second Excited State and Following Charge Recombination in Zinc–Porphyrin–Acceptor Dyads”, J. Phys. Chem. A, 117 (2013), 4564–4573

[16] M. Fujitsuka, T. Shiragami, D.\;W. Cho, S. Tojo, M. Yasuda, T. Majima, “Solvent Dynamics Regulated Electron Transfer in $\mathrm{S_2}$-Excited Sb and Ge Tetraphenylporphyrins with an Electron Donor Substituent at the Meso-Position”, J. Phys. Chem. A, 118:22 (2014), 3926–3933

[17] S. Wallin, C. Monnnereau, E. Blart, J.-R. Gankou, F. Odobel, L. Hammarsröm, “State-Selective Electron Transfer in an Unsymmetric Acceptor–Zn(II)porphyrin–Acceptor Triad: Toward a Controlled Directionality of Electron Transfer from the Porphyrin $\mathrm{S_2}$ and $\mathrm{S_1}$ States as a Basis for a Molecular Switch”, J. Phys. Chem. A, 114 (2010), 1709–1721

[18] L.\;D. Zusman, “Outer-sphere electron transfer in polar solvents”, Chem. Phys., 49 (1980), 295–304