Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2016_3_a2, author = {I. P. Popov}, title = {Scalar and vector differentiation of vectors}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {19--27}, publisher = {mathdoc}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2016_3_a2/} }
I. P. Popov. Scalar and vector differentiation of vectors. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 3 (2016), pp. 19-27. http://geodesic.mathdoc.fr/item/VVGUM_2016_3_a2/
[1] A. Ango, Mathematics for Electrical and Radio Engineers, Nauka Publ., M., 1965, 780 pp.
[2] A.\;M. Afanasyev, B.\;N. Siplivyy, “Mathematical Model of Electromagnetic Drying Mass Transfer Boundary Conditions Based on the Law of Dalton Evaporation”, Science Journal of Volgograd State University. Mathematics. Physics, 2014, no. 6 (25), 69–80
[3] A.\;I. Bodrenko, “Continuous HG-Deformations of Surfaces With an Edge in the Euclidean Space”, Science Journal of Volgograd State University. Mathematics. Physics, 2014, no. 1 (20), 6–13
[4] I.\;P. Popov, “Modeling State of the Object in a Superposition of States”, Prikladnaya matematika i voprosy upravleniya, 2015, no. 2, 18–27
[5] I.\;P. Popov, “On Measures of Mechanical Motion”, Vestnik Permskogo universiteta. Matematika. Mekhanika. Informatika, 2014, no. 3 (26), 13–15
[6] I.\;P. Popov, “Some Operations on Vectors”, Science Journal of Volgograd State University. Mathematics. Physics, 2014, no. 5 (24), 55–61