Influence of environment reorganization energy and its dynamic properties on vibrational spectral effect in the kinetics of photo-induced electron transfer
Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 2 (2016), pp. 70-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work the kinetics of photo-induced charge transfer in molecular donor–acceptor dyads is studied. The calculations are performed within the multichannel stochastic model. The model includes the reorganization of the environment, characterized by two relaxation times, the reorganization of high-frequency intramolecular vibrational mode and its relaxation as well. It is assumed that a single vibrational mode is active at the stage of molecule excitation and charge transfer stage and is characterized by the same value of the Huang–Rhys factor at both stages. The influence of the carrier frequency of the excitation pulse, leading to the population of different vibrational sublevels of locally-excited state on the charge transfer rate has been analyzed. For a quantitative description of this effect the concept of vibrational spectral effect is used. The effect is called positive if the charge transfer rate increases together with the carrier frequency of the excitation pulse, and negative in the opposite case. It is shown that the variation of dynamic properties of the solvent can change the value of the spectral effect significantly, leaving his sign unchanged. The growth of solvent reorganization energy leads to displacement of positive and negative effects' areas towards the region of larger charge transfer exergonicity by an amount of change of the reorganization energy. When the reaction exergonicity is fixed, the variation of the solvent reorganization energy leads to a strong change in the effect magnitude. When the solvent reorganization energy is changed by $0.4$ eV, vibrational spectral effect can vary from its minimum to maximum point. This finding allows controlling the charge transfer rate by varying the solvent polarity, that determine the value of the reorganization energy.
Keywords: vibrational relaxation, donor–acceptor pairs, excited state of high-frequency vibrational mode, vibrational spectral effect, Huang–Rhys factor.
@article{VVGUM_2016_2_a8,
     author = {V. Yu. Barykov and A. V. Tkacheva and A. I. Ivanov},
     title = {Influence of environment reorganization energy and its dynamic properties on vibrational spectral effect in the kinetics of photo-induced electron transfer},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {70--83},
     publisher = {mathdoc},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2016_2_a8/}
}
TY  - JOUR
AU  - V. Yu. Barykov
AU  - A. V. Tkacheva
AU  - A. I. Ivanov
TI  - Influence of environment reorganization energy and its dynamic properties on vibrational spectral effect in the kinetics of photo-induced electron transfer
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2016
SP  - 70
EP  - 83
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2016_2_a8/
LA  - ru
ID  - VVGUM_2016_2_a8
ER  - 
%0 Journal Article
%A V. Yu. Barykov
%A A. V. Tkacheva
%A A. I. Ivanov
%T Influence of environment reorganization energy and its dynamic properties on vibrational spectral effect in the kinetics of photo-induced electron transfer
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2016
%P 70-83
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2016_2_a8/
%G ru
%F VVGUM_2016_2_a8
V. Yu. Barykov; A. V. Tkacheva; A. I. Ivanov. Influence of environment reorganization energy and its dynamic properties on vibrational spectral effect in the kinetics of photo-induced electron transfer. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 2 (2016), pp. 70-83. http://geodesic.mathdoc.fr/item/VVGUM_2016_2_a8/

[1] V.\;Yu. Barykov, A.\;I. Ivanov, “Excited States of the High-Frequency Vibrational Modes and Kinetics of Ultrafast Photo-Induced Electron Transfer”, Zhurnal fizicheskoy khimii, 90 (2016), 300–307 | DOI

[2] A.\;I. Ivanov, V.\;N. Ionkin, S.\;V. Feskov, “Acceleration of the Recombination of Photo-excited Donor–Acceptor Complexes with a High-Frequency Vibrational Mode”, Zhurnal fizicheskoy khimii, 82:2 (2008), 374

[3] O.\;M. Sarkisov, A.\;N. Petrukhin, F.\;E. Gostev, A.\;A. Titov, “Control of Elementary Chemical Reactions by Femtosecond Light Impulses”, Kvantovaya elektronika, 31:6 (2001), 483

[4] E. Akesson, G.\;C. Walker, R.\;F. Barbara, “Dynamic Solvent Effects on Electron Transfer Rates in the Inverted Regime: Ultrafast Studies on the Betaines”, J. Chem. Phys., 95 (1991), 4188 | DOI

[5] V.\;Yu. Barykov, V.\;N. Ionkin, A.\;I. Ivanov, “Effect of Excitation Pulse Carrier Frequency on Ultrafast Photoinduced Charge Transfer Kinetics: Effect of Intramolecular High Frequency Vibrational Mode Excitation”, J. Phys. Chem., 119 (2015), 2989–2995 | DOI

[6] I.\;R. Gould, R.\;H. Young, R.\;E. Moody, S. Farid, “Contact and Solvent-Separated Geminate Radical Ion Pairs in Electron-Transfer Photochemistry”, J. Phys. Chem., 95 (1991), 2068 | DOI

[7] R.\;G. Fedunov, S.\;V. Feskov, A.\;I. Ivanov, et al., “Effect of the Excitation Pulse Carrier Frequency on the Ultrafast Charge Recombination Dynamics of Donor–Acceptor Complexes: Stochastic Simulations and Experiments”, J. Chem. Phys., 121 (2004), 3643 | DOI

[8] O. Nicolet, N. Banerji, S. Pages, E. Vauthey, “Effect of the Excitation Wavelength on the Ultrafast Charge Recombination Dynamics of Donor–Acceptor Complexes in Polar Solvents”, J. Phys. Chem. A, 109 (2005), 8236 | DOI

[9] J. Kallioinen, G. Benko, V. Sundstrom, J.\;E.\;I. Korppi-Tommola, A.\;P. Yartsev, “Electron Transfer from the Singlet and Triplet Excited States of Ru(dcbpy)2(NCS)2 into Nanocrystalline $\mathrm{TiO_2}$”, J. Phys. Chem. B, 106 (2002), 4396 | DOI

[10] H. Heitele, F. Pollinger, T. Haberle, et al., “Energy Gap and Temperature Dependence of Photoinduced Electron Transfer in Porphyrin–Quinone Cyclophanes”, J. Phys. Chem., 98 (1994), 7402 | DOI

[11] C. Zimmermann, F. Willig, S. Ramakrishna, B. Burfeindt, B. Pettinger, R. Eichberger, W. Storck, “Experimental Fingerprints of Vibrational Wave-Packet Motion during Ultrafast Heterogeneous Electron Transfer”, J. Phys. Chem. B, 105 (2001), 9245 | DOI

[12] S.\;J. Rosenthal, X. Xie, M. Du, G.\;R. Fleming, “Femtosecond Solvation Dynamics in Acetonitrile: Observation of the Inertial Contribution to the Solvent Response”, J. Chem. Phys., 95 (1991), 4715 | DOI

[13] S.\;V. Feskov, V.\;N. Ionkin, A.\;I. Ivanov, “Effect of High-Frequency Modes and Hot Transitions on Free Energy Gap Dependence of Charge Recombination”, J. Phys. Chem. A, 110 (2006), 11919 | DOI

[14] J.\;C. Gumy, O. Nicolet, E. Vauthey, “Investigation of the Solvation Dynamics of an Organic Dye in Polar Solvents Using the Femtosecond Transient Grating Technique”, J. Phys. Chem. A, 103 (1999), 10737 | DOI

[15] R. Jimenez, G.\;R. Fleming, P.\;V. Kumar, M. Maroncelli, “Femtosecond Solvation Dynamics of Water”, Nature, 369 (1994), 471 | DOI

[16] H. Kandori, K. Kemnitz, K. Yoshihara, “Subpicosecond Transient Absorption Study of Intermolecular Electron Transfer between Solute and Electron-Donating Solvents”, J. Phys. Chem., 96 (1992), 8042 | DOI

[17] Y.\;K. Kang, T.\;V. Duncan, M.\;J. Therien, “Temperature-Dependent Mechanistic Transition for Photoinduced Electron Transfer Modulated by Excited-State Vibrational Relaxation Dynamics”, J. Phys. Chem. B, 111 (2007), 6829 | DOI

[18] A.\;O. Kichigina, V.\;N. Ionkin, A.\;I. Ivanov, “U-Shaped Temperature Dependence of Rate Constant of Intramolecular Photoinduced Charge Separation in Zinc Porphyrin Bridge Quinone Compounds”, J. Phys. Chem., 117 (2013), 7426 | DOI

[19] F. Lenzmann, J. Krueger, S. Burnside, “Surface Photovoltage Spectroscopy of Dye-Sensitized Solar Cells with $\mathrm{TiO_2}$, $\mathrm{Nb_2O_5}$, and $\mathrm{SrTiO_3}$ Nanocrystalline Photoanodes: Indication for Electron Injection from Higher Excited Dye States”, J. Phys. Chem. B, 105 (2001), 6347 | DOI

[20] M. Maroncelli, V.\;P. Kumar, A.\;A. Papazyan, “Simple Interpretation of Polar Solvation Dynamics”, J. Phys. Chem., 97 (1993), 13 | DOI

[21] J. Petersson, L. Hammarsrtröm, “Ultrafast Electron Transfer Dynamics in a Series of Porphyrin/Viologen Complexes: Involvement of Electronically Excited Radical Pair Products”, J. Phys. Chem. B, 119 (2015), 7531–7540 | DOI

[22] M. Seel, S. Engleitner, W. Zinth, “Wavepacket Motion and Ultrafast Electron Transfer in the System Oxazine 1 in N,N-dimethylaniline”, Chem. Phys. Lett., 275 (1997), 363 | DOI

[23] L.\;E. Shaw, C.\;H. Langford, “The photochemistry of Mo(CNPh)6: Dissociative Photosubstitution and Evidence for Hot Electron Transfer”, Coord. Chem. Rev., 230 (2002), 165 | DOI

[24] S.\;V. Feskov, V.\;N. Ionkin, A.\;I. Ivanov, et al., “Solvent and Spectral Effects in the Ultrafast Charge Recombination Dynamics of Excited Donor–Acceptor Complexes”, J. Phys. Chem. A, 112 (2008), 594 | DOI

[25] M.\;L. Horng, J.\;A. Gardecki, A. Papazyan, M. Maroncelli, “Subpicosecond Measurements of Polar Solvation Dynamics Coumarin 153 Revisited”, J. Phys. Chem., 99 (1995), 17311 | DOI

[26] A.\;I. Ivanov, F.\;N. Belikeev, R.\;G. Fedunov, E. Vauthey, “The Effect of Excitation Pulse Carrier Frequency on Ultrafast Charge Recombination Dynamics of Excited Donor–Acceptor Complexes”, Chem. Phys. Lett., 372 (2003), 73 | DOI

[27] C. Wan, T. Xia, H.\;C. Becker, A.\;H. Zewail, “Ultrafast Unequilibrated Charge Transfer: A New Channel in the Quenching of Fluorescent Biological Probes”, Chem. Phys. Lett., 412 (2005), 158 | DOI

[28] B.\;I. Yakobson, A.\;I. Burshtein, “Relaxation Hindrance in Nonadiabatic Cage Reactions”, Chem. Phys., 49 (1980), 385 | DOI | MR

[29] V.\;V. Yudanov, V.\;A. Mikhailova, A.\;I. Ivanov, “Nonequilibrium phenomena in charge recombination of excited donor–acceptor complexes and free energy gap law”, J. Phys. Chem. A, 114 (2010), 12998–13004 | DOI

[30] V.\;V. Yudanov, V.\;A. Mikhailova, A.\;I. Ivanov, “Reorganization of Intramolecular High Frequency Vibrational Modes and Dynamic Solvent Effect in Electron Transfer Reactions”, J. Phys. Chem. A, 116 (2012), 4010–4019 | DOI

[31] L.\;D. Zusman, “Outer-sphere electron transfer in polar solvents”, Chem. Phys., 49 (1980), 295–304 | DOI | MR