Modeling of industrial ventilation systems: design issue of 3D computational mesh
Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 2 (2016), pp. 52-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

Numerical simulation of gas dynamics flows is the basis of the study of air currents and ventilation devices, aspiration problems. Therefore, an important task is construction of numerical grids for geometrically complex industrial premises using computer-aided design system. The main problem discussed in the article is converting threedimensional models composed of basic shapes (rectangles, cylinders, hemispheres, cones, and pyramids) to regular rectangular grids with the choice of boundary conditions for all facets of each cell. A regular rectangular grid is chosen to use for large industrial facilities due to its access pattern which fits for parallel processing on GPU well. Disadvantages of used grid type appear in representation of rounded and inclined shapes. Graphic user interface of developed software allows constructing threedimensional models composed of basic shapes with definition of boundary conditions for each surface of them. Four types of boundary conditions are supported for separate definition of three variables (velocity, pressure, and temperature) in ghost cells. The algorithm to obtain computational grid consists of three stages. At first there is searching of cells which are inside userdefined shapes. These cells need to have boundary conditions for each facet. To determine whether the cell is inside the shape cell center is brought to coordinate system of this shape. The next step is fulfilling constraints which demand that every cell must have at least one neighbor cell of the same type (either computational or ghost) along each axis. The final step is defining of boundary conditions for each facet of ghost cells. A facet gets boundary conditions from shape surface which is nearer in space and in angle between perpendiculars (facet normal and surface normal). Sample workshop with dimensions $320 \times 90 \times 42$ m is described to examine developed software. Modelled velocity and temperature distributions after $60$ seconds are provided.
Keywords: gas dynamics, 3D model, computational mesh, discretization, boundary conditions, software, CAD system.
@article{VVGUM_2016_2_a6,
     author = {Yu. V. Shafran and A. V. Khoperskov},
     title = {Modeling of industrial ventilation systems: design issue of {3D} computational mesh},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {52--62},
     publisher = {mathdoc},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2016_2_a6/}
}
TY  - JOUR
AU  - Yu. V. Shafran
AU  - A. V. Khoperskov
TI  - Modeling of industrial ventilation systems: design issue of 3D computational mesh
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2016
SP  - 52
EP  - 62
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2016_2_a6/
LA  - ru
ID  - VVGUM_2016_2_a6
ER  - 
%0 Journal Article
%A Yu. V. Shafran
%A A. V. Khoperskov
%T Modeling of industrial ventilation systems: design issue of 3D computational mesh
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2016
%P 52-62
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2016_2_a6/
%G ru
%F VVGUM_2016_2_a6
Yu. V. Shafran; A. V. Khoperskov. Modeling of industrial ventilation systems: design issue of 3D computational mesh. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 2 (2016), pp. 52-62. http://geodesic.mathdoc.fr/item/VVGUM_2016_2_a6/

[1] O.\;A. Averkova, I.\;N. Logachev, K.\;I. Logachev, Aerodynamics of Dust Ventilation. Methods of Mathematical Modeling, Computing and Natural Experiment, Practical Guidelines, LAP Lambert Academic Publishing, Saarbrucken (Germany), 2012, 432 pp.

[2] O.\;A. Averkova, I.\;N. Logachev, K.\;I. Logachev, Separated Flows in the Spectra of Exhaust Ducts, IKI Publ., M.–Izhevsk, 2012, 288 pp.

[3] E.\;S. Bondar, A.\;S. Gordienko, V.\;A. Mikhaylov, G.\;V. Nimich, Automation of Ventilation Systems and Air Conditioning, TOV «Vidavnichij budinok “Avanpost-Prim”», Kiev, 2005, 560 pp.

[4] E.\;N. Boshnyakov, Aspiration-Technological Plants of Nonferrous Metallurgy, Metallurgiya Publ., M., 1987, 160 pp.

[5] O.\;D. Volkov, Design of Ventilation of an Industrial Building, Harkov, Vyshcha shkola Publ., 1989, 240 pp.

[6] O.\;A. Averkova, K.\;V. Plotnikov, E.\;I. Tolmacheva, D.\;A. Emelyanov, A.\;K. Logachev, “Simulation of Air Flow During Carriages Unloading to Receiving Funnel of Crushing Body”, Vestnik Belgorodskogo gosudarstvennogo tekhnologicheskogo universiteta im. V.\;G. Shukhova, 2015, no. 5, 134–139

[7] N.\;M. Kuzmin, M.\;A. Butenko, “Numerical Code for Computation of Aspiration Flows in Industrial Buildings”, Science Journal of Volgograd State University. Mathematics. Physics, 2015, no. 5 (30), 52–60 | DOI | MR

[8] I.\;N. Logachev, K.\;I. Logachev, Aerodynamic Basics of Aspiration, Monograph, Khimizdat Publ., SPb., 2005, 659 pp.

[9] Yu.\;V. Shafran, M.\;A. Butenko, N.\;M. Kuzmin, A.\;V. Khoperskov, “Software for Optimizing Ventilation Systems of Large Industrial Workshops”, Modern Information Technologies and IT-Education, Proceedings of 9th International Conference, ed. prof. V.\;A. Sukhomlin, INTUIT.RU Publ., M., 2014, 509–517

[10] M.\;A. Butenko, A.\;V. Khoperskov, S.\;A. Khoperskov, Software Package for Calculation of the Structure of Complex Unsteady Air Flows, Certificate of State Registration of Computer Program no. 2013662163; registered on April 2, 2014

[11] A.\;V. Khoperskov, V.\;N. Azarov, S.\;A. Khoperskov, E.\;A. Korotkov, A.\;G. Zhumaliev, “Forming the Nonstationary Regimes During Simulation of Aspiration Flows: Kelvin–Helmholtz Instability”, Science Journal of Volgograd State University. Mathematics. Physics, 2011, no. 1 (14), 151–155

[12] A.\;V. Khoperskov, Yu.\;V. Shafran, M.\;A. Butenko, “Numerical Simulation of Ventilation Flows in Industrial Rooms”, Yuzhno-Sibirskiy nauchnyy vestnik, 2014, no. 2 (6), 98–102

[13] Lei Jin, Zhehua Liu, Yuanquan Liu, “Research of a Bidirectional Ventilation Device to Improve Indoor Environment”, Procedia Engineering, 121 (2015), 1913–1918 | DOI

[14] I.\;N. Logachev, K.\;I. Logachev, Industrial air quality and ventilation: controlling dust emissions, CRC Press, Boca Raton, 2014, 417 pp.

[15] Yuting Ma, Yiqiang Jiang, Lan Li, “Numerical Simulation of PM2.5 Distribution in Indoor Air”, Procedia Engineering, 121 (2015), 1939–1947 | DOI

[16] O.\;A. Averkova, I.\;V. Kryukov, K.\;V. Plotnikov, E.\;I. Tolmacheva, I.\;V. Khodakov, “Modeling separated flows using stationary discrete vortices”, Modern Applied Science, 9:3 (2015), 291–298 | DOI

[17] Catalin Teodosiu, Viorel Ilie, Raluca Teodosiu, “Numerical Prediction of Thermal Comfort and Condensation Risk in a Ventilated Office, Equipped with a Cooling Ceiling”, Energy Procedia, 85 (2016), 550–558 | DOI

[18] E.\;F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, A Practical Introduction, Springer–Verlag, 1999, 624 pp. | MR | Zbl

[19] Jiandong Yang, Huang Wang, Wencheng Guo, Weijia Yang, Wei Zeng, “Simulation of Wind Speed in the Ventilation Tunnel for Surge Tanks in Transient Processes”, Energies, 9:2 (2016), 95–110 | DOI