Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2016_2_a2, author = {T. K. Yuldashev}, title = {Mixed {Boussinesq-type} differential equation}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {13--26}, publisher = {mathdoc}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2016_2_a2/} }
T. K. Yuldashev. Mixed Boussinesq-type differential equation. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 2 (2016), pp. 13-26. http://geodesic.mathdoc.fr/item/VVGUM_2016_2_a2/
[1] S.\;D. Algazin, I.\;A. Kiyko, Flutter of Plates and Shells, Nauka Publ., M., 2006, 248 pp.
[2] A.\;M. Akhtyamov, A.\;R. Ayupova, “On the Solution of the Problem of Diagnosing Defects in the Form of a Small Cavity in the Rod”, Zhurnal Srednevolzhskogo matematicheskogo obshestva, 12:3 (2010), 37–42
[3] A.\;D. Baev, S.\;A. Shabrov, Meach Mon, “On Uniqueness of Solution of the Mathematical Model of Forced String Oscillation Singularities”, Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Fizika. Matematika, 2014, no. 1, 50–55
[4] M.\;Kh. Beshtokov, “A Numerical Method for Solving One Nonlocal Boundary-Value Problem for a Third-Order Hyperbolic Equation”, Zhurnal vychislitelnoy matematiki i matematicheskoy fiziki, 54:9 (2014), 1497–1514 | DOI | MR | Zbl
[5] I.\;M. Gelfand, “Some Questions of Analyses and Differential Equations”, Uspekhi matematicheskih nauk, 14:3 (1959), 3–19 | MR | Zbl
[6] D.\;G. Gordeziani, G.\;A. Avilishbili, “Solving the Nonlocal Problems for One-Dimensional Medium Oscillation”, Matematicheskoe modelirovanie, 12:1 (2000), 94–103 | MR | Zbl
[7] T.\;D. Dzhuraev, A. Sopuev, M. Mamazhanov, Boundary-Value Problems for the Equations of Parabolic-Hyperbolic Type, Fan Publ., Tashkent, 1986, 220 pp. | MR
[8] A.\;A. Zamyshlyaeva, “Sobolev-Type Mathematical Models of Higher Order”, Vestnik Yuzhno-Uralskogo gosudarstvennogo universiteta. Seriya: Matematicheskoe modelirovanie i programmirovanie, 7:2 (2014), 5–28 | Zbl
[9] O.\;S. Zikirov, “On Dirichlet Problem for Third-Order Hyperbolic Equations”, Izvestiya vuzov. Matematika, 2014, no. 7, 63–71 | MR | Zbl
[10] E.\;I. Moiseev, “Solvability of a Nonlocal Boundary Value Problem”, Differentsialnye uravneniya, 37:11 (2001), 1565–1567 | MR | Zbl
[11] L. S. Pulkina, “A Nonlocal Problem for a Hyperbolic Equation With Integral Conditions of the 1st Kind With Time-Dependent Kernels”, Izvestiya vuzov. Matematika, 2012, no. 10, 32–44 | MR | Zbl
[12] L.\;Kh. Rakhmanova, “Solution of a Nonlocal Problem for a Mixed-Type Parabolic-Hyperbolic Equation in a Rectangular Domain by the Spectral Method”, Izvestiya vuzov. Matematika, 2007, no. 11, 36–40 | MR | Zbl
[13] O.\;A. Repin, “An Analogue of the Nakhushev Problem for the Bitsadze–Lykov Equation”, Differentsialnye uravneniya, 38:10 (2002), 1412–1417 | MR | Zbl
[14] K.\;B. Sabitov, On the Theory of Mixed-Type Equations, Fizmatlit Publ., M., 2014, 301 pp.
[15] Yu.\;K. Sabitova, “Boundary-Value Problem With Nonlocal Integral Condition for Mixed-Type Equations With Degeneracy on the Transition Line”, Matematicheskie zametki, 98:3 (2015), 393–406 | DOI | MR | Zbl
[16] M.\;S. Salakhitdinov, A.\;K. Urinov, Boundary-Value Problems for the Mixed-Type Equations With Spectral Parameter, Fan Publ., Tashkent, 1997, 165 pp. | MR
[17] A. Sopuev, N.\;K. Arkabaev, “Conjugation Problems for Linear Pseudoparabolic Equations of Third Order”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika. Mekhanika, 21:1 (2013), 16–23 | MR
[18] M.\;V. Turbin, “Investigation of Initial-Boundary Value Problem for the Herschel–Bulkley Mathematical Fluid Model”, Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Fizika. Matematika, 2013, no. 2, 246–257
[19] G. Whitham, Linear and Nonlinear Waves, Mir Publ., M., 1977, 622 pp. | MR
[20] E.\;A. Utkina, “On Third Order Equations With Pseudoparabolic Operator and With Shift of Arguments of Initial Function”, Izvestiya vuzov. Matematika, 2015, no. 5, 62–68 | Zbl
[21] Ya.\;S. Uflyand, “On the Question of the Distribution of Fluctuations in the Composite Electrical Lines”, Inzhenerno-fizicheskiy zhurnal, 7:1 (1964), 89–92
[22] F.\;I. Frankl, Selected Works in Gas Dynamics, Nauka Publ., M., 1973, 711 pp. | MR
[23] S.\;A. Shabrov, “On Estimates of the Impact of a Mathematical Function of the Fourth-Order Model”, Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Fizika. Matematika, 2015, no. 2, 168–179
[24] M.\;Kh. Shkhanukov, “Some Boundary-Value Problems for a Third-Order Equation Arising in the Simulation of Fluid Flow in Porous Media”, Differentsialnye uravneniya, 18:4 (1982), 689–699 | MR | Zbl
[25] T.\;K. Yuldashev, “Nonlinear Integro-Differential Equation of Pseudoparabolic Type With Nonlocal Integral Condition”, Science Journal of Volgograd State University. Mathematics. Physics, 2016, no. 1 (32), 11–23
[26] T.\;K. Yuldashev, “On an Inverse Problem for a Partial Linear Fredholm Integro-Differential Equation”, Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Fizika. Matematika, 2015, no. 2, 180–189
[27] T.\;K. Yuldashev, “On a Certain Fredholm Partial Integro-Differential Equation of the Third Order”, Izvestiya vuzov. Matematika, 2015, no. 9, 74–79 | MR | Zbl
[28] T.\;K. Yuldashev, “Inverse Problem for Nonlinear Fredholm Integro-Differential Equation of Fourth Order With Degenerate Kernel”, Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Seria «Fiziko-matematicheskie nauki», 19:4 (2015), 736–749 | DOI
[29] T.\;K. Yuldashev, “Inverse Problem for a Partial Fredholm Integro-Differential Equation of Third Order”, Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Seria «Fiziko-matematicheskie nauki», 34:1 (2014), 56–65 | DOI
[30] D.\;J. Benney, J.\;C. Luke, “Interactions of permanent waves of finite amplitude”, Journ. Math. Phys., 43 (1964), 309–313 | DOI | MR | Zbl