Nonlinear integro-differential equation of pseudoparabolic type with nonlocal integral condition
Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 1 (2016), pp. 11-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

The mathematical modeling of many processes occurring in the real world leads to the study of direct and inverse problems for equations of mathematical physics. Direct problems for partial differential and integro-differential equations by virtue of their importance in the application are one of the most important parts of the theory of differential equations. In the case, when the boundary of the flow of physical process is not applicable for measurements, as an additional information can be used on nonlocal conditions in the integral form. We propose a method of studying the one-value solvability of the nonlocal problem for a nonlinear third-order integro-differential equation. Such type of differential equations models many natural phenomena and appears in many fields of sciences. For this reason, a great importance was given to this type of equations in the works of many researchers. We use the Fourier method of separation of variables. The application of this method of separation of variables can improve the quality of formulation of the given problem and facilitate the processing procedure. So in this article the author studies the questions of one-value solvability of nonlocal mixed-value problem for nonlinear pseudoparabolic type of integro-differential equation. By applying the Fourier method of separation of variables, the author obtained the countable system of nonlinear integral equations (CSNIE). The theorem of one-value solvability of CSNIE is proved using the method of successive approximations in combination with the method of compressing mapping. Further the author showed the convergence of Fourier series to unknown function—to the solution of the nonlocal mixed-value problem. It is also checked that the solution of the given is smooth. Every estimate was obtained with the help of the Holder inequality, Minkovski inequality and Bessel-type inequality. This paper advances the theory of nonlinear partial integro-differential equations.
Keywords: mixed-value problem, integro-differential equation, nonlocal integral condition, one-value solvability.
Mots-clés : pseudoparabolic-type equation
@article{VVGUM_2016_1_a2,
     author = {T. K. Yuldashev},
     title = {Nonlinear integro-differential equation of pseudoparabolic type with nonlocal integral condition},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {11--23},
     publisher = {mathdoc},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2016_1_a2/}
}
TY  - JOUR
AU  - T. K. Yuldashev
TI  - Nonlinear integro-differential equation of pseudoparabolic type with nonlocal integral condition
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2016
SP  - 11
EP  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2016_1_a2/
LA  - ru
ID  - VVGUM_2016_1_a2
ER  - 
%0 Journal Article
%A T. K. Yuldashev
%T Nonlinear integro-differential equation of pseudoparabolic type with nonlocal integral condition
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2016
%P 11-23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2016_1_a2/
%G ru
%F VVGUM_2016_1_a2
T. K. Yuldashev. Nonlinear integro-differential equation of pseudoparabolic type with nonlocal integral condition. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 1 (2016), pp. 11-23. http://geodesic.mathdoc.fr/item/VVGUM_2016_1_a2/

[1] S.\;D. Algazin, I.\;A. Kiyko, Flutter of Plates and Shells, Nauka Publ., M., 2006, 248 pp.

[2] A.\;A. Andreev, Yu.\;O. Yakovleva, “The Characteristic Problem for a System of Hyperbolic Differential Equations of the Third Order of General Form With Nonmultiple Characteristics”, Vestnik Samarskogo gosudarstvennogo tehnicheskogo universiteta. Seriya «Fiziko-matematicheskie nauki», 30:1 (2013), 31–36 | DOI

[3] A.\;D. Baev, S.\;A. Shabrov, Meach Mon, “Uniqueness of the Solution of Mathematical Model of Forced String Oscillation With Singularities”, Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Fizika. Matematika, 2014, no. 1, 50–55

[4] M.\;Kh. Beshtokov, “A Numerical Method for Solving One Nonlocal Boundary Value Problem for a Third-Order Hyperbolic Equation”, Zhurnal vychislitelnoy matematiki i matematicheskoy fiziki, 54:9 (2014), 1497–1514 | DOI | MR | Zbl

[5] D.\;G. Gordeziani, G.\;A. Avilishvili, “Solving the Nonlocal Problems for One-Dimensional Medium Oscillation”, Matematicheskoe modelirovanie, 12:1 (2000), 94–103 | MR | Zbl

[6] A.\;A. Zamyshlyaeva, “Sobolev-Type Mathematical Models of Higher Order”, Vestnik Yuzhno-Uralskogo gosudarstvennogo universiteta. Seriya: Matematicheskoe modelirovanie i programmirovanie, 7:2 (2014), 5–28 | Zbl

[7] O.\;S. Zikirov, “Dirichlet Problem for Third-Order Hyperbolic Equations”, Izvestiya vuziv. Matematika, 2014, no. 7, 63–71 | MR | Zbl

[8] A. Sopuev, N.\;K. Arkabaev, “Conjugation Problems for Linear Pseudoparabolic Equations of Third Order”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika. Mekhanika, 21:1 (2013), 16–23 | MR

[9] M.\;V. Turbin, “Investigation of Initial-Boundary Value Problem for the Herschel–Bulkley Mathematical Fluid Model”, Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Fizika. Matematika, 2013, no. 2, 246–257

[10] S.\;A. Shabrov, “On a Mathematical Model of Small Deformations of a Bar System With Internal Features”, Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Fizika. Matematika, 2013, no. 1, 232–250

[11] M.\;Kh. Shkhanukov, “On Some Boundary Value Problems for a Third-Order Equation Arising in the Simulation of Fluid Flow in Porous Media”, Differentsialnye uravneniya, 18:4 (1982), 689–699 | MR | Zbl

[12] T.\;K. Yuldashev, “On One Integro-Differential Equation of Fredholm in Partial Derivatives of Third Order”, Izvestiya vuziv. Matematika, 2015, no. 9, 74–79 | MR | Zbl

[13] T.\;K. Yuldashev, “On the Inverse Problem for Nonlinear Integro-Differential Equations of Higher Order”, Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Fizika. Matematika, 2014, no. 1, 153–163

[14] T.\;K. Yuldashev, “The Inverse Problem for a Fredholm Integro-Differential Equation in Partial Derivatives of Third Order”, Vestnik Samarskogo gosudarstvennogo tehnicheskogo universiteta. Seriya «Fiziko-matematicheskie nauki», 34:1 (2014), 56–65 | DOI

[15] T.\;K. Yuldashev, “The Inverse Problem for a Nonlinear Integro-Differential Equation With Hyperbolic Operator of the Higher Degree”, Vestnik Yuzhno-Uralskogo gosudarstvennogo universiteta. Seriya: Matematika. Mekhanika. Fizika, 5:1 (2013), 69–75 | MR | Zbl

[16] T.\;K. Yuldashev, “The Inverse Problem for a Nonlinear Integro-Differential Equation of the Third Order”, Vestnik Samarskogo gosudarstvennogo universiteta. Seriya: Estestvennye nauki, 2013, no. 1, 58–66 | MR | Zbl

[17] T.\;K. Yuldashev, “Mixed Value Problem for a Nonlinear Equation With Pseudoparabolic Operator of Higher Degree”, Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Fizika. Matematika, 2013, no. 2, 237–255

[18] D.\;J. Benney, J.\;C. Luke, “Interactions of permanent waves of finite amplitude”, Journ. Math. Phys., 43 (1964), 309–313 | DOI | MR | Zbl