On limit value of the Gaussian curvature of the minimal surface at infinity
Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 1 (2016), pp. 6-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

A lot of works on researching of solutions of equation of the minimal surfaces, which are given over unbounded domains (see, for example, [1; 2; 4–6]) in which various tasks of asymptotic behavior of the minimal surfaces were studied. In the present paper the object of the research is a study of limit behavior of Gaussian curvature of the minimal surface given at infinity. We use a traditional approach for the solution of a similar kind of tasks which is a construction of auxiliary conformal mapping which appropriate properties are studied. Let $z=f(x,y)$ is a solution of the equation of minimal surfaces (1) given over the domain $D$ bounded by two curves $L_1$ and $L_2$, coming from the same point and going into infinity. We assume that $f(x,y) \in C^2(\overline{D})$. For the Gaussian curvature of minimal surfaces $K(x,y)$ will be the following theorem. Theorem. If the Gaussian curvature $K(x,y)$ of the minimal surface (1) on the curves $L_1$ and $L_2$ satisfies the conditions $$ K(x,y) \to 0, \quad ((x,y) \to \infty, (x,y) \in L_n) \quad n=1,2, $$ then $K(x,y) \to 0$ for $(x,y)$ tending to infinity along any path lying in the domain $D$.
Keywords: equations of the minimal surfaces, Gaussian curvature, asymptotic behavior, holomorphic function, isothermal coordinates, holomorphic function in the metric of the surface.
@article{VVGUM_2016_1_a1,
     author = {R. S. Akopyan},
     title = {On limit value of the {Gaussian} curvature of the minimal surface at infinity},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {6--10},
     publisher = {mathdoc},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2016_1_a1/}
}
TY  - JOUR
AU  - R. S. Akopyan
TI  - On limit value of the Gaussian curvature of the minimal surface at infinity
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2016
SP  - 6
EP  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2016_1_a1/
LA  - ru
ID  - VVGUM_2016_1_a1
ER  - 
%0 Journal Article
%A R. S. Akopyan
%T On limit value of the Gaussian curvature of the minimal surface at infinity
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2016
%P 6-10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2016_1_a1/
%G ru
%F VVGUM_2016_1_a1
R. S. Akopyan. On limit value of the Gaussian curvature of the minimal surface at infinity. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 1 (2016), pp. 6-10. http://geodesic.mathdoc.fr/item/VVGUM_2016_1_a1/

[1] R.\;S. Akopyan, “About the Admissible Speed of Approaching to Zero of Gaussian Curvature of Minimal Surface over Strip Domain”, Science Journal of Volgograd State University. Mathematics. Physics, 2012, no. 2, 4–8

[2] R.\;S. Akopyan, “Theorems of Fragmen–Lindelef Type for the Minimal Surface over Strip Domain”, Science Journal of Volgograd State University. Mathematics. Physics, 2013, no. 2, 6–12

[3] M.\;A. Evgrafov, Analytic Functions, Nauka Publ., M., 1991, 448 pp.

[4] V.\;M. Miklyukov, “On the Hyberbolicity Criterion for Noncompact Riemannian Manifolds of Special Type”, Granichnye zadachi matematicheskoy fiziki, Naukova Dumka Publ., Kiev, 1983, 137–146

[5] R. Oserman, “Minimal Surfaces”, Russian Mathematical Surveys, XXII:4 (1967), 55–136

[6] V.\;I. Pelikh, “Theorems of Fragmen–Lindelef on Minimal Surfaces”, Geometricheskiy analiz i ego prilozheniya: Nauchnye shkoly VolGU, Izd-vo VolGU Publ., Volgograd, 1999, 352–368 | Zbl

[7] J.\;C.\;C. Nitsche, Vorlesungen über Minimalflächen, Springer-Verlag, Berlin–Heidelberg–New York, 1975, 778 pp. | MR | Zbl