Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2015_6_a5, author = {S. A. Sudorgin and N. G. Lebedev}, title = {Differential thermoelectric power of bilayer graphene nanoribbons with hydrogen adsorbed atoms}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {83--93}, publisher = {mathdoc}, number = {6}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2015_6_a5/} }
TY - JOUR AU - S. A. Sudorgin AU - N. G. Lebedev TI - Differential thermoelectric power of bilayer graphene nanoribbons with hydrogen adsorbed atoms JO - Matematičeskaâ fizika i kompʹûternoe modelirovanie PY - 2015 SP - 83 EP - 93 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VVGUM_2015_6_a5/ LA - ru ID - VVGUM_2015_6_a5 ER -
%0 Journal Article %A S. A. Sudorgin %A N. G. Lebedev %T Differential thermoelectric power of bilayer graphene nanoribbons with hydrogen adsorbed atoms %J Matematičeskaâ fizika i kompʹûternoe modelirovanie %D 2015 %P 83-93 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/VVGUM_2015_6_a5/ %G ru %F VVGUM_2015_6_a5
S. A. Sudorgin; N. G. Lebedev. Differential thermoelectric power of bilayer graphene nanoribbons with hydrogen adsorbed atoms. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 6 (2015), pp. 83-93. http://geodesic.mathdoc.fr/item/VVGUM_2015_6_a5/
[1] A.\;A. Varlamov, A.\;V. Kavokin, I.\;A. Lukyanchuk, S.\;G. Sharapov, “Anomalous thermoelectric and thermomagnetic properties of graphene”, UFN, 182:11 (2012), 1229–1234 | DOI
[2] M.\;B. Belonenko, N.\;G. Lebedev, S.\;A. Sudorgin, “Electrical Conductivity and Diffusion Coefficient of Electrons in Bilayer Graphene”, ZhTF, 82:7 (2012), 129–133
[3] A.\;S. Bulygin, G.\;M. Shmelev, I.\;I. Maglevannyy, “Differential Thermoelectric Power of the Superlattice in a Strong Electric Field”, FTT, 41:7 (1999), 1314–1316
[4] S.\;Yu. Davydov, G.\;I. Sabirova, “Adsorption of Hydrogen on the Graphene”, Pisma v ZhTF, 36:24 (2010), 77–84
[5] P.\;N. Dyachkov, Electronic Properties and Applications of Nanotubes, BINOM. Laboratoriya znaniy Publ., M., 2010, 488 pp.
[6] Yu.\;A. Izyumov, I.\;I. Chashchin, D.\;S. Alekseev, The Theory of Strongly Correlated Systems. Generating Functional Method, NIC «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 2006, 384 pp.
[7] L.\;D. Landau, E.\;M. Lifshits, Physical Kinetics, Fiz.-mat. lit. Publ., M., 1979, 528 pp. | MR
[8] A.\;V. Mavrinskiy, E.\;M. Baytinger, “The Thermoelectric Power of Carbon Nanotubes”, Fizika i tekhnika poluprovodnikov, 43:4 (2009), 501–506
[9] A.\;V. Pak, N.\;G. Lebedev, “Model of Multiple Adsorption of the Hydrogen Atoms on the Carbon Nanotubes Surface”, Khimicheskaya fizika, 31:3 (2012), 82–87
[10] E.\;G. Rakov, “Chemistry and Application of Carbon Nanotubes”, Uspekhi khimii, 70:10 (2001), 934–973
[11] P. Harris, Carbon Nanotubes and Related Structures. New Materials of the 21st Century, Tekhnosfera Publ., M., 2003, 336 pp.
[12] K. Behnia, M.\;A. Measson, Y. Kopelevich, “Nernst effect in semimetals: the effective mass and the figure of merit”, Phys. Rev. Lett., 98:7 (2007), 076603 | DOI
[13] F. Guinea, A.\;H. Castro Neto, N.\;M.\;R. Peres, “Electronic states and Landau levels in graphene stacks”, Phys. Rev. B, 73:24 (2006), 245426 | DOI
[14] R.\;A. Jishi, M.\;S. Dresselhaus, G. Dresselhaus, “Electron–phonon coupling and the electrical conductivity of fullerene nanotubules”, Physical review B, 48:15 (1993), 385–389 | DOI
[15] S.\;A. Maksimenko, G.\;Ya. Slepyan, “Nanoelectromagnetics of low-dimentional structure”, Handbook of nanotechnology. Nanometer structure: theory, modeling, and simulation, SPIE press, Bellingham, 2004, 576 pp.
[16] M. Kruger, I. Widmer, T. Nussbaumer, M. Buitelaar, C. Schonenberger, “Sensitivity of single multiwalled carbon nanotubes to the environment”, New J. Phys., 5 (2003), 138.1–138.11 | DOI
[17] S.\;G. Sharapov, A.\;A. Varlamov, “Anomalous growth of thermoelectric power in gapped graphene”, Phys. Rev. V, 86:3 (2012), 035430 | DOI
[18] S.\;A. Sudorgin, N.\;G. Lebedev, M.\;B. Belonenko, “Effect of electric field on the transport and diffusion properties of bilayer graphene ribbons”, Physica Scripta, 87 (2013), 015602 | DOI | Zbl