Differential thermoelectric power of bilayer graphene nanoribbons with hydrogen adsorbed atoms
Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 6 (2015), pp. 83-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we propose the calculating technique for the differential thermopower of bilayer graphene nanoribbons with surface atomic hydrogen adsortion. Differential thermoelectric power characterizes the rate of potential difference change induced by the temperature gradient when the temperature changes. Analytical method of calculation makes it possible to obtain the dependence of the bilayer graphene ribbons differential thermopower on the concentration of the adsorbed on the surface of the hydrogen atoms of the external constant electric field, the geometric dimensions of the transverse strips and the electrostatic potential between the layers of ribbon. Adsorption of hydrogen atoms on the graphene ribbon surface described using periodic Anderson model. Bilayer graphene ribbons are considered in the pi-electron Huckel approximation. Formula of differential thermopower in doped bilayer graphene ribbons derived analytically in an external electric field and found its nonlinear dependence of the field strength. We investigated the dependence of the differential thermoelectric power of the concentration of adsorbed atoms, ribbons geometry and magnitude of electrostatic potential between the layers of the ribbons.
Keywords: grapheme, bilayer graphene ribbons, thermoelectric power
Mots-clés : adsorption, nanostructures.
@article{VVGUM_2015_6_a5,
     author = {S. A. Sudorgin and N. G. Lebedev},
     title = {Differential thermoelectric power of bilayer graphene nanoribbons with hydrogen adsorbed atoms},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {83--93},
     publisher = {mathdoc},
     number = {6},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2015_6_a5/}
}
TY  - JOUR
AU  - S. A. Sudorgin
AU  - N. G. Lebedev
TI  - Differential thermoelectric power of bilayer graphene nanoribbons with hydrogen adsorbed atoms
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2015
SP  - 83
EP  - 93
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2015_6_a5/
LA  - ru
ID  - VVGUM_2015_6_a5
ER  - 
%0 Journal Article
%A S. A. Sudorgin
%A N. G. Lebedev
%T Differential thermoelectric power of bilayer graphene nanoribbons with hydrogen adsorbed atoms
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2015
%P 83-93
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2015_6_a5/
%G ru
%F VVGUM_2015_6_a5
S. A. Sudorgin; N. G. Lebedev. Differential thermoelectric power of bilayer graphene nanoribbons with hydrogen adsorbed atoms. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 6 (2015), pp. 83-93. http://geodesic.mathdoc.fr/item/VVGUM_2015_6_a5/

[1] A.\;A. Varlamov, A.\;V. Kavokin, I.\;A. Lukyanchuk, S.\;G. Sharapov, “Anomalous thermoelectric and thermomagnetic properties of graphene”, UFN, 182:11 (2012), 1229–1234 | DOI

[2] M.\;B. Belonenko, N.\;G. Lebedev, S.\;A. Sudorgin, “Electrical Conductivity and Diffusion Coefficient of Electrons in Bilayer Graphene”, ZhTF, 82:7 (2012), 129–133

[3] A.\;S. Bulygin, G.\;M. Shmelev, I.\;I. Maglevannyy, “Differential Thermoelectric Power of the Superlattice in a Strong Electric Field”, FTT, 41:7 (1999), 1314–1316

[4] S.\;Yu. Davydov, G.\;I. Sabirova, “Adsorption of Hydrogen on the Graphene”, Pisma v ZhTF, 36:24 (2010), 77–84

[5] P.\;N. Dyachkov, Electronic Properties and Applications of Nanotubes, BINOM. Laboratoriya znaniy Publ., M., 2010, 488 pp.

[6] Yu.\;A. Izyumov, I.\;I. Chashchin, D.\;S. Alekseev, The Theory of Strongly Correlated Systems. Generating Functional Method, NIC «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 2006, 384 pp.

[7] L.\;D. Landau, E.\;M. Lifshits, Physical Kinetics, Fiz.-mat. lit. Publ., M., 1979, 528 pp. | MR

[8] A.\;V. Mavrinskiy, E.\;M. Baytinger, “The Thermoelectric Power of Carbon Nanotubes”, Fizika i tekhnika poluprovodnikov, 43:4 (2009), 501–506

[9] A.\;V. Pak, N.\;G. Lebedev, “Model of Multiple Adsorption of the Hydrogen Atoms on the Carbon Nanotubes Surface”, Khimicheskaya fizika, 31:3 (2012), 82–87

[10] E.\;G. Rakov, “Chemistry and Application of Carbon Nanotubes”, Uspekhi khimii, 70:10 (2001), 934–973

[11] P. Harris, Carbon Nanotubes and Related Structures. New Materials of the 21st Century, Tekhnosfera Publ., M., 2003, 336 pp.

[12] K. Behnia, M.\;A. Measson, Y. Kopelevich, “Nernst effect in semimetals: the effective mass and the figure of merit”, Phys. Rev. Lett., 98:7 (2007), 076603 | DOI

[13] F. Guinea, A.\;H. Castro Neto, N.\;M.\;R. Peres, “Electronic states and Landau levels in graphene stacks”, Phys. Rev. B, 73:24 (2006), 245426 | DOI

[14] R.\;A. Jishi, M.\;S. Dresselhaus, G. Dresselhaus, “Electron–phonon coupling and the electrical conductivity of fullerene nanotubules”, Physical review B, 48:15 (1993), 385–389 | DOI

[15] S.\;A. Maksimenko, G.\;Ya. Slepyan, “Nanoelectromagnetics of low-dimentional structure”, Handbook of nanotechnology. Nanometer structure: theory, modeling, and simulation, SPIE press, Bellingham, 2004, 576 pp.

[16] M. Kruger, I. Widmer, T. Nussbaumer, M. Buitelaar, C. Schonenberger, “Sensitivity of single multiwalled carbon nanotubes to the environment”, New J. Phys., 5 (2003), 138.1–138.11 | DOI

[17] S.\;G. Sharapov, A.\;A. Varlamov, “Anomalous growth of thermoelectric power in gapped graphene”, Phys. Rev. V, 86:3 (2012), 035430 | DOI

[18] S.\;A. Sudorgin, N.\;G. Lebedev, M.\;B. Belonenko, “Effect of electric field on the transport and diffusion properties of bilayer graphene ribbons”, Physica Scripta, 87 (2013), 015602 | DOI | Zbl