Problems of measurement and modeling of thermal and radiation fields in biological tissues: analysis of microwave thermometry datа
Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 6 (2015), pp. 31-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

One of the current problems at the interface of medicine, tool engineering, mathematical modeling and data mining is a creation of new generation of medical devices and methods of functional diagnostics based on dynamic mapping of physical fields and radiation of human body. One promising approach is the microwave radiometry as a biophysical method of non-invasive survey, which is measuring the internal and surface tissue temperature from the intensity of the thermal radiation in the microwave and infrared ranges. Analysis of domestic and foreign literature on medical microwave radiometry apparatus showed that now many questions of principle technology of highly informative receivers for thermal electromagnetic radiation in relation to medical problems are solved. Both abroad and in our country there is an intensive study of the diagnostic capabilities of radiometry in different wavelength ranges in various fields of applied medicine. However, the development of effective methods of medical diagnosis has an obstacle as the lack of sufficient quantitative and qualitative description of the behavior of temperature fields in various human organs as in the presence of pathological processes, so in their absence. The authors presented review analysis of the works devoted to the description, mathematical modeling and interpretation of data obtained from microwave radiometry, and it is one of the steps to solve this problem.
Keywords: microwave radiometry, singularities of the spatiotemporal temperature distributions in biological tissues, medical data mining, mammology, mathematical modeling.
@article{VVGUM_2015_6_a3,
     author = {A. G. Losev and A. V. Khoperskov and A. S. Astakhov and H. M. Suleymanova},
     title = {Problems of measurement and modeling of thermal and radiation fields in biological tissues: analysis of microwave thermometry dat{\cyra}},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {31--71},
     publisher = {mathdoc},
     number = {6},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2015_6_a3/}
}
TY  - JOUR
AU  - A. G. Losev
AU  - A. V. Khoperskov
AU  - A. S. Astakhov
AU  - H. M. Suleymanova
TI  - Problems of measurement and modeling of thermal and radiation fields in biological tissues: analysis of microwave thermometry datа
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2015
SP  - 31
EP  - 71
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2015_6_a3/
LA  - ru
ID  - VVGUM_2015_6_a3
ER  - 
%0 Journal Article
%A A. G. Losev
%A A. V. Khoperskov
%A A. S. Astakhov
%A H. M. Suleymanova
%T Problems of measurement and modeling of thermal and radiation fields in biological tissues: analysis of microwave thermometry datа
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2015
%P 31-71
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2015_6_a3/
%G ru
%F VVGUM_2015_6_a3
A. G. Losev; A. V. Khoperskov; A. S. Astakhov; H. M. Suleymanova. Problems of measurement and modeling of thermal and radiation fields in biological tissues: analysis of microwave thermometry datа. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 6 (2015), pp. 31-71. http://geodesic.mathdoc.fr/item/VVGUM_2015_6_a3/

[1] V.\;P. Avdoshin, M.\;I. Andryukhin, V.\;N. Shirshov, Depth Radiometry in the Diagnosis and Assessment of Treatment Effectiveness Urologic Diseases, Kvantovaya meditsina Publ., M., 2007, 209 pp.

[2] G.\;V. Avramenko, “Using Microwave Radiometry in the Screening of Non-Palpable Breast Neoplasms”, Vestnik rentgenologii i radiologii, 2007, no. 5, 11–14 | MR

[3] A.\;S. Astakhov, V.\;V. Bumagin, P.\;A. Krylov, “An Empirical Study of the Edge Enhancement Algorithms for the Prototype of Cell Sorting Expert System”, Rezultaty nauchnykh issledovaniy i razrabotok, Sb. st. Mezhdunar. nauch.-prakt. konf., Sterlitamak, 2015, 7–11

[4] E.\;V. Astrakhantseva, V.\;Yu. Gidaspov, D.\;L. Reviznikov, “Mathematical Modelling of Hemodynamics of Large Blood Vessels”, Mathematical Models and Computer Simulations, 17:8 (2005), 61–80 | Zbl

[5] A.\;K. Bogdanov, V.\;D. Protsenko, Practical Application of Modern Methods for Image Analysis in Medicine, Izd-vo RUDN Publ., M., 2008, 77 pp.

[6] M.\;F. Borisenkov, “The Risk of Developing Cancer in Women: a Possible Link with the Geographical Latitude and Some Economic and Social Factors”, Problems in Oncology, 57:3 (2011), 343–354

[7] Sh.\;I. Buvaev, “Microwave Radiometry in Study of Cervical Lymph Nodes in Normal and Metastatic Lesions in Patients with Laryngeal Cancer”, Vestnik KGMA im. I.\;K. Akhunbaeva, 2012, no. 3, 97–100

[8] M.\;V. Bukatin, E.\;V. Ilyukhin, L.\;P. Knyshova, “Analysis of Cancer Incidence in the Population of the Volgograd Region”, Fundamentalnye issledovaniya, 2007, no. 10, 63

[9] D.\;A. Vedenyapin, A.\;G. Losev, “On a Neural Network Model of Diagnosis of Venous Diseases”, Upravlenie bolshimi sistemami, 39, 2012, 219–229

[10] S.\;G. Vesnin, K.\;M. Sedankin, N.\;A. Pashkova, “Mathematical Modeling Self-Radiation of the Human Brain in Microwave Range”, Biomeditsinskaya radioelektronika, 2015, no. 3, 17–32

[11] S.\;G. Vesnin, K.\;M. Sedankin, “Mathematical Modeling of the Intrinsic Emission of Human Tissue in the Microwave Range”, Biomeditsinskaya radioelektronika, 2010, no. 9, 33–44

[12] S.\;G. Vesnin, “Microwave Radiometry—Russian National Treasure”, Zdravookhranenie, 2007, no. 9, 159–164

[13] S.\;G. Vesnin, K.\;M. Sedankin, “Miniature Antenna Applicators for Medical Microwave Radiometry Destination”, Biomeditsinskaya radioelektronika, 2011, no. 10, 51–356

[14] S.\;G. Vesnin, K.\;M. Sedankin, “Development of the Series of Antennas-Applicators for Non-Invasive Measurement of Tissue Temperature the Human Body in Various Pathologies”, Inzhenernyy zhurnal: nauka i innovatsii, 2012, no. 11 (11), 1–18 | DOI

[15] S.\;G. Vesnin, A.\;M. Kaplan, R.\;S. Avakyan, “Modern Microwave Radiometry of Breast”, Meditsinskiy almanakh, 2008, no. 3, 82–87

[16] S.\;G. Vesnin, K.\;M. Sedankin, “Comparison of Microwave Antennas-Applicators for Medical Purposes”, Biomeditsinskaya radioelektronika, 2012, no. 10, 63–74

[17] A.\;V. Khoperskov, S.\;S. Khrapov, V.\;V. Novochadov, D.\;V. Burnos, “The Influence of Small-Scale Structure of the Breast on the Distribution of Internal Temperature Using Microwave Radiometry Diagnostics”, Science Journal of Volgograd State University. Mathematics. Physics, 2014, no. 6, 60–68

[18] A.\;A. Terpilovskiy, Kh.\;P. Tiras, A.\;V. Khoperskov, V.\;V. Novochadov, “The Possibilities of Full-Color Three-Dimensional Reconstruction Using Layer-By-Layer Overlay Method: a Rat Knee”, Science Journal of Volgograd State University. Natural Sciences, 2015, no. 4 (14), 9–19

[19] V.\;N. Voloshin, A.\;S. Mukhin, O.\;E. Tarakanova, “Using Radiometry in Determining the Level and Method of Amputation of the Lower Extremities in Patients with Critical Ishim”, Sovremennye tekhnologii v meditsine, 2011, no. 4, 95–98

[20] V.\;A. Glazunov, A.\;V. Zenovich, A.\;G. Losev, “Genetic Algorithms for Determining Highly Informative Signs of Breast Diseases”, Science Journal of Volgograd State University. Mathematics. Physics, 2015, no. 5 (30), 71–85

[21] Yu.\;M. Davydov, I.\;M. Davydov, “Nonlinear Non-Monotonic Rheological Properties of Blood”, Vestnik Permskogo natsionalnogo issledovatelskogo politekhnicheskogo universiteta. Mekhanika, 2001, no. 9, 10–19

[22] M.\;I. Davydov, V.\;P. Letyagin, Breast Cancer (Atlas), ABV-press Publ., M., 2006, 136 pp.

[23] M.\;I. Davydov, D.\;G. Zaridze, “Screening of Cancer”, Vestnik RONTs im. N.\;N. Blokhina, 25:3 (2014), 5–18

[24] M.\;I. Davydov, E.\;M. Aksel, Statistics of Malignant Tumors in Russia and the CIS in 2012, Izdatelskaya gruppa RONTs Publ., M., 2014, 226 pp.

[25] T.\;V. Zamechnik, S.\;I. Larin, A.\;G. Losev, Combined Radiometry as a Method of Investigation of the Venous Circulation in Lower Limb, Izd-vo VolgGMU Publ., Volgograd, 2015, 252 pp.

[26] T.\;V. Zamechnik, N.\;S. Ovcharenko, S.\;I. Larin, A.\;G. Losev, “Study Reliability Combined Thermography as a Diagnostic Method the State of the Veins of the Lower Extremities”, Flebologiya, 4:3 (2010), 23–26

[27] T.\;V. Zamechnik, E.\;A. Mazepa, S.\;I. Cherkesova, G.\;V. Pankova, “To the Question of Optimizing Breast Screening By Microwave Radiometry”, Vestnik novykh meditsinskikh tekhnologiy, 21:4 (2014), 34–38

[28] V.\;I. Klyatskin, “Electromagnetic Wave Propagation in a Randomly Inhomogeneous Medium as a Problem in Mathematical Statistical Physics”, Physics-Uspekhi, 174:2 (2004), 177–195 | DOI

[29] B.\;A. Kobrinskiy, “Consulting Intelligent Medical Systems: Classification, Principles of Construction, Efficiency”, Vrach i informatsionnye tekhnologii, 2008, no. 2, 38–47

[30] B.\;A. Kobrinskiy, “Decision Support Systems in Health and Education”, Vrach i informatsionnye tekhnologii, 2010, no. 2, 39–45

[31] B.\;A. Kobrinskiy, “A Retrospective Analysis of Medical Expert Systems”, Novosti iskusstvennogo intellekta, 2005, no. 2, 6–17

[32] S.\;V. Kozlov, “Comparative Analysis of Methods Preinvasive Diagnosis of Melanoma of the Skin”, Saratovskiy nauchno-meditsinskiy zhurnal, 9:1 (2013), 88–91

[33] S.\;N. Kolesov, Zh.\;V. Prakhova, G.\;M. Dmitrieva, “Study of Brightness Temperature of a Healthy Person in the Microwave Range”, Teploradiovidenie v travmatologii i ortopedii, Sb. nauch. tr. GNIITO, Gorkiy, 1988, 129–136

[34] A. Konushin, “Point Feature Tracking”, Kompyuternaya grafika i multimedia, 2003, no. 1 (5), 6

[35] A.\;G. Losev, E.\;A. Mazepa, Kh.\;M. Suleymanova, “The Relationship Between Some Signs of RTM-Diagnosis of Breast Diseases”, Science Journal of Volgograd State University. Mathematics. Physics, 2015, no. 4 (29), 35–51

[36] A.\;G. Losev, E.\;A. Mazepa, T.\;V. Zamechnik, “Some Typical Symptoms in the Diagnosis of Breast Pathology Glands According Microwave Radiometry”, Sovremennye problemy nauki i obrazovaniya, 2014, no. 6, 254–261 | MR

[37] A.\;G. Losev, T.\;A. Stavrov, “A Classification Algorithm Combined Method of Thermometry Diagnosis of Venous Diseases”, Estestvennye i tekhnicheskie nauki, 2011, no. 5 (55), 268–270

[38] U.\;B. Lushchik, V.\;V. Novitskiy, Some Aspects of the Applied Hemodynamics in the Era of Intravital Imaging Technology, Istina Publ., Kiev, 2005, 136 pp.

[39] S.\;V. Marechek, “Radiometric Methods for Studying Temperature of the Surface Layer of Biological Tissue”, Biomeditsinskie tekhnologii i radioelektronika, 2003, no. 8, 57–64

[40] E.\;G. Martirossov, D.\;V. Nikolaev, S.\;G. Rudnev, Technologies and Methods of Determining the Composition of the Human Body, Nauka Publ., M., 2006, 248 pp.

[41] V.\;B. Koshelev, S.\;I. Mukhin, N.\;V. Sosnin, A.\;P. Favorskiy, “Mathematical Modeling of Hemodynamics of the Cardiovascular System, Taking Into Account of Neuroregulation”, Mathematical Models and Computer Simulations, 19:3 (2007), 15–28 | Zbl

[42] V.\;B. Koshelev, S.\;I. Mukhin, N.\;V. Sosnin, A.\;P. Favorskiy, Mathematical Modeling of Quasi-One-Dimensional Hemodynamics, MAKS Press Publ., M., 2010, 114 pp.

[43] V.\;M. Moiseenko, V.\;F. Semiglazov, “Kinetics of Breast Cancer Growth and Its Significance for the Early Detection of Tumors”, Mammologiya, 1997, no. 3, 3–11

[44] Ch.\;N. Mustafin, “Experience of Using Radiometry in Diagnosis Breast Cancers”, Rossiyskiy onkologicheskiy zhurnal, 2009, no. 4, 36–42

[45] I.\;I. Novruzov, V.\;V. Komarov, “Study of Electromagnetic and Thermal Fields in the Near Area of Contact Type Waveguide Applicator”, Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Tekhnicheskie nauki, 2011, no. 4 (20), 151–158

[46] E.\;V. Anisimova, T.\;V. Zamechnik, A.\;G. Losev, E.\;A. Mazepa, “On Some Characteristic Features in the Diagnosis of Diseases of the Lower Extremities By a Combined Thermography”, Vestnik novykh meditsinskikh tekhnologiy, 18:2 (2011), 329–330

[47] P.\;S. Vetshev, K.\;E. Chilingaridi, A.\;V. Zolkin, S.\;G. Vesnin, D.\;I. Gabaidze, D.\;A. Bannyy, “The First Radio-Termography Experience in the Diagnosis of Thyroid Gland Diseases”, Khirurgiya, 2006, no. 6, 54–58

[48] V.\;M. Popkov, N.\;P. Chesnokova, V.\;Yu. Barsukova, Carcinogenesis: Pathophysiological and Clinical Aspects, Izd-vo SGMU Publ., Saratov, 2011, 600 pp.

[49] L.\;M. Burdina, V.\;A. Khaylenko, E.\;V. Kizhaev, A.\;A. Legkov, E.\;G. Pinkhosevich, Ch.\;K. Mustafin, A.\;V. Vaysblat, S.\;G. Vesnin, N.\;N. Tikhomirova, Application of the Diagnostic Radiometer Computerized Integrated Deep Tissue Temperature for Breast Cancer, RMAPO Publ., M., 1999, 35 pp.

[50] L.\;M. Burdina, A.\;V. Vaysblat, S.\;G. Vesnin, M.\;A. Konkin, A.\;V. Lashchenkov, N.\;G. Naumkina, N.\;N. Tikhomirova, “Application of Radiometer for the Diagnosis of Breast Cancer”, Mammologiya, 1998, no. 2, 3–12

[51] V.\;V. Ryazhenov, S.\;G. Gorokhova, “Analysis of the Incidence of Breast Cancer Based on HER2 Status in the Russian Federation”, Sovremennaya onkologiya, 2011, no. 3, 19–22

[52] N.\;A. Korenevskiy, M.\;I. Lukashov, M.\;V. Artemenko, N.\;M. Agarkov, “Synthesis of Hybrid Fuzzy Decision Rules for Classification Clinical Variants of the Genital Herpes Based Models of Systemic Linkages”, Fundamentalnye issledovaniya, 2014, no. 10, 901–907

[53] V.\;A. Soyfer, Methods of Computer Image Processing, FIZMATLIT Publ., M., 2003, 192 pp.

[54] I.\;A. Sokolova, V.\;B. Koshelev, “Syndrome of Increased Blood Viscosity”, Tekhnologii zhivykh sistem, 8:6 (2011), 78–81

[55] T.\;V. Zamechnik, S.\;I. Larin, A.\;G. Losev, N.\;S. Ovcharenko, “Method of Combined Thermometer and Probabilistic Mathematical Models Diagnosis of Venous Diseases of the Lower Extremities”, Vestnik novykh meditsinskikh tekhnologiy, 16:4 (2009), 14–16

[56] A.\;I. Lobanov, T.\;K. Starozhilova, V.\;I. Zarnitsyna, F.\;I. Ataullakhanov, “Comparison of Two Mathematical Models for Spatial Phenomena of the Blood Coagulation”, Mathematical Models and Computer Simulations, 15:1 (2003), 14–28 | MR | Zbl

[57] N.\;V. Strakhova, S.\;M. Demidov, I.\;S. Bulavina, “Breast Cancer: Analysis of Morbidity and Mortality in the Sverdlovsk Region for 20 Years”, Uralskiy meditsinskiy zhurnal, 2012, no. 4, 103–105

[58] S.\;S. Khrapov, M.\;A. Butenko, A.\;V. Pisarev, A.\;V. Khoperskov, Supercomputer Technologies for Modeling Hydrodynamic Flows: Monograph, Izd-vo VolGU, Volgograd, 2012, 208 pp.

[59] S.\;N. Tamkovich, V.\;E. Voyitskiy, P.\;P. Laktionov, “Modern Methods of Breast Cancer Diagnosis”, Biomeditsinskaya khimiya, 60:2 (2014), 141–160

[60] E.\;V. Anisimova, T.\;V. Zamechnik, S.\;I. Larin, A.\;G. Losev, E.\;A. Mazepa, “Theoretical Case Studies of the Physical and Physiological Factors, Affecting the Quality of the Examination of Patients with Varicose Veins of the Lower Extremities By a Combined Thermography”, Vestnik novykh meditsinskikh tekhnologiy, 18:4 (2011), 280–282

[61] A.\;V. Ubaychin, “Printed Antenna for Microwave Applicator Radiometric Method for Measuring Internal Temperature Within the Biological Objects”, Doklady TUSUR, 2013, no. 3 (29), 47–52

[62] R.\;Yu. Fadeev, “Algorithm for Reduced Grid Generation on a Sphere for a Global Finite-Difference Atmospheric Model”, Computational mathematics and mathematical physics, 53:2 (2013), 291–308 | DOI | MR | Zbl

[63] A.Ż. Khashukoeva, E.\;A. Tsomaeva, N.\;D. Vodyanik, “The Use of Transabdominal and Vaginal Radiometry in Complex Diagnostics of Inflammatory Diseases of Appendages Uterus”, Lechenie i profilaktika, 2012, no. 1, 26–30

[64] S.\;S. Khrapov, I.\;A. Kobelev, A.\;V. Pisarev, A.\;V. Khoperskov, “4D-Model in Ecological Simulations: An Information System Designing”, Science Journal of Volgograd State University. Technology and Innovations, 2011, no. 5, 119–124

[65] A.\;V. Pisarev, S.\;S. Khrapov, E.\;O. Agafonnikova, A.\;V. Khoperskov, “Numerical Model of Surface Waters Dynamics in the Volga: the Estimation of Roughness”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2013, no. 1, 114–130

[66] S.\;S. Khrapov, A.\;V. Khoperskov, N.\;M. Kuzmin, A.\;V. Pisarev, I.\;A. Kobelev, “A Numerical Scheme for Modeling the Dynamics of Surface Water Based on the Combined SPH–TVD-Approach”, Vychislitelnye metody i programmirovanie: novye vychislitelnye tekhnologii, 12:1 (2011), 282–297

[67] V.\;I. Chissov, V.\;A. Solodkiy, D.\;D. Pak, “Screening for Breast Cancer: History and Prospects”, Onkologiya, 2013, no. 2, 46–51

[68] R.\;S. Akki, K. Arunachalam, “A study of factors influencing detectability of breast tumour in microwave radiometry”, Engineering in Medicine and Biology Society (EMBC), 36th Annual International Conference of the IEEE, 2014, 1119–1122

[69] M. Aletti, J.-F. Gerbeau, D. Lombardi, “Modeling autoregulation in three-dimensional simulations of retinal hemodynamics”, Journal for Modeling in Ophthalmology, 1 (2015), Article ID hal-01242748

[70] F. Bardati, S. Iudicello, “Modeling the Visibility of Breast Malignancy by a Microwave Radiometer”, IEEE Trans. Biomed. Engineering, 55:1 (2008), 214–221 | DOI

[71] A.\;H. Barrett, P.\;C. Myers, N.\;L. Sadowsky, “Microwave Thermography in the Detection of Breast Cancer”, Am. J. Roentgenol., 134:2 (1980), 365–368 | DOI

[72] A.\;H. Barrett, P.\;C. Myers, “Subcutaneous Temperature: A method of Noninvasive Sensing”, Science, 190 (1975), 669–671 | DOI

[73] A. Bihlo, R.\;D. Haynes, “Parallel stochastic methods for PDE based grid generation”, Computers Mathematics with Applications, 68:8 (2014), 804–820 | DOI | MR

[74] E.\;A. Cheever, K.\;R. Foster, “Microwave Radiometry in Living Tissue: What Does it Measure”, IEEE Trans. Biomed. Engineering, 39:6 (1992), 563–867 | DOI

[75] F. Bianconi, E. Baldellii, L. Crina, A. Flacco, “Computational model of EGFR and IGF1R pathways in lung cancer: a Systems Biology approach for Translational Oncology”, Biotechnology Advances, 30:1 (2012), 142–153 | DOI

[76] K. Das, S.\;C. Mishra, “Estimation of tumor characteristics in a breast tissue with known skin surface temperature”, Journal of Thermal Biology, 38:6 (2013), 311–317 | DOI

[77] K.\;E. Fear, M. Stuchly, “Microwave detection of breast cancer”, IEEE Trans. Microwave Theory Tech., 48:11 (2000), 1854–1863 | DOI

[78] A.\;V. Filatov, A.\;V. Ubaichin, A.\;A. Bombizov, “A two-receiver microwave radiometer with high transfer characteristic linearity”, Measurement Techniques, 55:11 (2013), 1281–1286 | DOI

[79] J. Liu, X. Zhang, X. Zhang, H. Zhao, Y. Gao, D. Thomas, D.\;A. Low, H. Gao, “5D respiratory motion model based image reconstruction algorithm for 4D cone-beam computed tomography”, Inverse Problems, 31:11 (2015), Article ID 115007 | DOI | MR

[80] M. Gautherie, “Temperature and Blood Flow Patterns in Breast Cancer During Natural Evolution and Following Radiotherapy”, Biomedical Thermology, Progress in clinical and biological research, 107, 1982, 21–64

[81] S.\;K. Hamlin, P.Ż. Strauss, “Basic Concepts of Hemorheology in Microvascular Hemodynamics”, Critical care nursing clinics of north America, 26:3 (2014), 337–344 | DOI

[82] I.\;P. Herman, Physics of the Human Body, Springer-Verlag, Berlin–Heidelberg, 2007, 880 pp.

[83] M. Heijblom, M. Klaase, F.\;M. Engh, M. Heijblom, “Imaging tumor vascularization for detection and diagnosis of breast cancer”, Technol. Cancer Res. Treat., 10:6 (2011), 607–623

[84] S.-W. Shin, K.-S. Kim, J.-W. Lee, J.-S. Han, K.-H. Neo, “Implementing Graphic User Interface System for Microwave Radiometry Data to Utilize Breast Cancer Diagnosis”, The Transactions of the Korean Institute of Electrical Engineers, 62:6 (2013), 818–824 | DOI

[85] Y. Leroy, B. Bocquet, A. Mammouni, “Non-invasive microwave radiometry thermometry”, Physiol. Means., 19:2 (1998), 127–148 | DOI

[86] I. Johanssona, F. Killandera, B. Linderholmd, I. Hedenfalk, “Molecular profiling of male breast cancer”, The International Journal of Biochemistry Cell Biology, 53:2 (2014), 526–535 | DOI

[87] E.-K. Ng, N.\;M. Sudharson, “Computer simulation in conjunction with medical thermography as an adjunct tool for early detection of breast cancer”, BMC Cancer, 4 (2004), 17–22 | DOI

[88] D.\;B. Rodrigues, P.\;F. Maccarini, S. Salahi, E. Colebeck, E. Topsakal, P.\;J. Pereira, P. Limao-Vieira, P.\;R. Stauffer, “Numerical 3D modeling of heat transfer in human tissues for microwave radiometry monitoring of brown fat metabolism”, Energy-based Treatment of Tissue and Assessment VII, Proc. SPIE, 8584, 2013 | DOI

[89] N.\;J. Pelc, R.\;M. Nishikawa, B.\;R. Whiting, Medical Imaging 2012: Physics of Medical Imaging, Proc. SPIE, 8313, San Diego, California, USA, 2012, 213 pp.

[90] F. Bianconi, E. Baldellii, V. Ludovini, L. Crino, P. Valigi, “Robustness of complex feedback systems: application to oncological biochemical networks”, International Journal of Control, 86:7 (2013), 1304–1321 | DOI | MR | Zbl

[91] D.\;B. Rodrigues, “Numerical 3D modeling of heat transfer in human tissues for microwave radiometry monitoring of brown fat metabolism”, Progress in Biomedical Optics and Imaging, Proceedings of SPIE, 8584, 2013

[92] K.\;H. Russel, J.\;R. Bradley, Intermediate Physics for Medicine and Biology, Springer Science+Business Media LLC, N.-Y., 2007, 616 pp. | MR

[93] T.\;H. Shah, E. Siores, C. Daskalakis, “Non-Invasive Devices for Early Detection of Breast Tissue Oncological Abnormalities Using Microwave Radio Thermometry”, Advances in Cancer Therapy, 2011, 447–476

[94] L. Sherwood, Fundamentals of Human Physiology, Brooks/Cole, Belmont, 2012, 720 pp.

[95] D.\;P. Clark, C.-L. Lee, D.\;G. Kirsch, C.\;T. Badea, “Spectrotemporal CT data acquisition and reconstruction at low dose”, Medical Physics, 42:11 (2015), 6317–6336 | DOI

[96] P.\;R. Stauffer, D.\;R. Rodrigues, P.\;R. Stauffer, “Utility of Microwave Radiometry for Diagnostic and Therapeutic Applications of Non-Invasive Temperature Monitoring”, IEEE BenMAS (Benjamin Franklin Symposium on Microwave and Antenna Sub-systems), 2014 | DOI

[97] P. Kelly, T. Sobers, B.\;S. Peter, P. Siqueira, G. Capraro, “Temperature anomaly detection and estimation using microwave radiometry and anatomical information”, Medical Imaging 2011: Physics of Medical Imaging, Proc. SPIE, 7961, 2011, Article ID 79614U | DOI

[98] P. Wust, C.\;H. Choo, B. Hildebrandt, J. Gellermann, “Thermal monitoring: invasive, minimal-invasive and non-invasive approaches”, Int J. Hyperthermia, 22:3 (2006), 255–262 | DOI

[99] Ch. Van Ongeval, “Digital mammography for screening and diagnosis of breast cancer: an overview”, Journal of the Belgian Society of Radiology, 90:3 (2007), 163–166 | MR

[100] Y. Zhang, P.\;J. Passmore, R.\;H. Bayford, “Task based visualization of 5D brain EIT data”, Proceedings of the 2009 ACM symposium on Applied Computing, SAC ’09, 2009, 831–835 | DOI